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In these notes I will explain the relation between coordinate transformations, Poincare

transformations, conformal transformations, and Weyl transformations in quantum

field theory.

Briefly, coordinate changes are trivial relabelings; Poincare transformations are physical

symmetries inherited from isometries of the background manifold; conformal transfor-

mations are physical symmetries inherited from conformal isometries of the background

manifold; and Weyl transformations are not symmetries at all, but relationships be-

tween two different theories on different manifolds. (A ‘physical symmetry’ relates

physically different observables in the same theory, organizes the quantum states of a

fixed Hilbert space into representations, etc.)

Summary

Here is a collection of the main formulas we will derive, for easy reference. Many of

these formulas are redundant. In this summary O(x) is a scalar but below I will include

the extra factors for spinning operators. Let

y = x′ = f(x) . (1)

I label correlation functions by the invariant line element ds2, or by the metric compo-

nents gµν , or with the shorthand

ds2 = g(x)dx2 := gµν(x)dxµdxν . (2)
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Coordinate invariance

O′(x′) = O(x) (3)

O′(y) = O(f−1(y)) (4)

〈O′(x′1) · · · 〉ds2 = 〈O(x1) · · · 〉ds2 (5)

〈O(x1) · · · 〉g(x)dx2 = 〈O(x′1) · · · 〉g′(x)dx2 (6)

Poincare symmetry

〈O′(x1) · · · 〉ds2 = 〈O(x1) · · · 〉ds2 . (7)

Conformal symmetry

O′(x′) = Ω(x)−∆O(x), Ω(x) = |∂x′/∂x|1/d (8)

O′(y) = Ω̃(y)∆O(f−1(y)) , Ω̃(y) = |∂x/∂y|1/d = Ω(x)−1 (9)

〈O(x1) · · · 〉ds2 = 〈O′(x1) · · · 〉ds2 (10)

〈O(x1) · · · 〉Ω2ds2 = 〈O′(x′1) · · · 〉ds2 , Ω = |∂x′/∂x|1/d (11)

where ds2 = gµν(x)dxµdxν in these expressions and in the last formula, Ω2ds2 =

gµν(x
′)dx′µdx′ν . In d = 2, eqn (10) applies only to SO(2, 2) transformations.

Weyl transformations

〈O(x) · · · 〉Ω2ds2 = Ω(x)−∆ · · · 〈O(x) · · · 〉ds2 (12)

Now we proceed to the details.

Coordinate changes

Under a general coordinate change, tensors transform as

O′µν···(x′) = Jαµ J
β
ν · · · Oαβ···(x) , Jαµ =

∂xα

∂x′µ
. (13)
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I will suppress the indices and use the shorthand

O′(x′) = R(x, x′)O(x) , x′ = f(x) (14)

so throughout this note you can set R = 1 for scalars. Equivalently, with y = x′ = f(x),

O′(y) = R(x, y)O(f−1y) . (15)

Aside: Often people swap the labels x ↔ x′ to write this as O′(x) = R(x′, x)O(x′), with
x′ = f−1(x). This is common in the literature on CFTs in d > 2 dimensions. I will stick to
the convention in (14) whenever I use a prime on x′. I prefer this convention because only
in this case is the operator O′(x′) actually a local operator supported at the spacetime
point x′; the operator O′(x0) is supported at the point x′ = x0, not x = x0. In other
words, the argument of O′ is a value of the coordinate x′, even if we happen to call it x...
if that was confusing then I’ve made my point!

The physical information in a correlation function is coordinate invariant. This implies

coord: 〈O′(x′1) · · · 〉g′ = R(x1, x
′
1)〈O(x1) · · · 〉g (16)

where I have labeled the correlator by the metric components g′µν . Both correlators in

this equation are of course in the same physical metric, ds2 = gµνdx
µdxν = g′µνdx

′µdx′ν .

For example if we rewrite a CFT 2-point function in spherical coordinates,

〈O(x1)O(x2)〉 = |x1 − x2|−2∆ ⇒ 〈O(r1, n̂1)O(r2, n̂2)〉 = |r2
1 + r2

2 − 2r1r2n̂1 · n̂2|−∆

(17)

we are using (16). We often omit the prime on O′(r1, θ1), as I have done here, because

it is implied by the arguments. But clearly there is a secret prime, because if I ask

“What is O(3, 0)?” you will respond “In what coordinates?” and I will have to tell you

or I’m not making sense.

We can also write coordinate changes in a format where the line element changes. For
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example, a scalar 2-point obviously satisfies

〈O(x1)O(x2)〉dx2 =
〈
O(

x1

λ
)O(

x2

λ
)
〉
λ2dx2

(18)

This is not a dilatation or Weyl transformation; it is a trivial change of units, and

the equation holds in any QFT. Similarly for general tensors and general coordinate

changes,

coord′: R(x1, x
′
1)〈O(x1) · · · 〉g(x)dx2 = 〈O(x′1) · · · 〉g′(x)dx2 (19)

Derivation: (19) is equivalent to

〈O′(x′1) · · · 〉ds2 = 〈O(f(x1)) · · · 〉ds2f (20)

where the line element ds2
f is obtained by replacing x→ f−1(x) in ds2,

ds2
f = gµν(f−1(x))df−1(x)µdf−1(x)ν (21)

(20) is basically trivially. To derive it, starting with the lhs, write the metric as ds2 =
gµν(x)dxµdxν = gµν(f−1(x′))df−1(x′)µdf−1(x′)ν , then simply rename x′ → x. The coor-
dinate is a dummy variable so we are free to call it whatever we want. Note, however,
that the coordinate x is not really the ‘same’ coordinate on the two sides of (18) or (19),
because the metrics are different.

Symmetries from isometries

So far all we have discussed is a trivial relabeling of points. Now we will see that

isometries of the background metric lead to physical symmetries. An isometry is a

coordinate transformation such that

g′µν(x) = gµν(x) . (22)

For example in flat spacetime gµν = ηµν the isometries are Poincare transformations.

The fact that isometries ⇒ symmetries follows immediately from (19). If x→ x′ is an

4



isometry, then we can replace g′(x) = g(x) on the rhs of (19), giving

R(x1, x
′
1)〈O(x1) · · · 〉ds2 = 〈O(x′1) · · · 〉ds2 . (23)

This is an equality between two different physical observables in the same metric, hence

a physical symmetry. Setting

y = x′ = f(x) (24)

it becomes

Poincare: 〈O′(y1) · · · 〉ds2 = 〈O(y1) · · · 〉ds2 (25)

Thus correlators are invariant under replacing all operators by

O(y1)→ O′(y1) := R(x1, y1)O(f−1y1) . (26)

(And note R(x1, y1) = R(f(x1), x1)−1.) This can also be derived from the action of a

conserved charge Q that generates the symmetry,

O′(y) = eQO(y)e−Q . (27)

We have assumed implicitly that the vacuum state is invariant under the isometry,

e−Q|0〉 = |0〉, so that

〈0|O1(x1)O2(x2) · · · |0〉 = 〈0|eQO1(x1)e−QeQO2(x2)e−Q · · · |0〉 . (28)

Infinitessimal symmetries correspond to infinitessimal action of the charge, so with

x′ = x− δx,

δO(x1) := O′(x1)−O(x1) (29)

= [Qδx,O(x1)] (30)

= LδxO(x1) (31)

where Lζ is the Lie derivative.
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Conformal transformations

We will now specialize to CFTs.

A conformal isometry is a coordinate change such that

g′µν(x) ∝ gµν(x) (32)

As far as its action on the coordinates, a conformal transformation is a conformal

isometry. However its action on the fields is different from a coordinate change.

For the rest of this note, I will assume the manifold is conformally flat, ds2 ∝ ds2
flat.

The conformal isometries are coordinate transformations that rescale and rotate at

each point,

∂x′µ

∂xν
= Ω(x)Sµν(x), Sµν ∈ SO(d) . (33)

Derivation: The conformal isometries depend only on the conformal class of the metric
(i.e. are insensitive to the overall prefactor) so we can assume gµν = δµν . By the definition
of conformal (32), there exists a function Ω(x) such that

g′µν(x′) = Ω(x)−2δµν . (34)

Plugging in g′µν(x′) = ∂xα

∂x′µ
∂xβ

∂x′ν δµν , the equation says MMT = 1 with Mα
µ = Ω(x) ∂x

α

∂x′µ .
Therefore M is locally a rotation, and inverting gives (33). This derivation assumed x is a
Cartesian coordinate, but the result (33) is general because changing coordinates will only
turn Sµν into the rotation matrix of your new coordinates. (It is only literally an SO(d)
matrix in Cartesian coordinates; I really mean it’s a rotation matrix. In any coordinates,
detS = 1.)

Taking the determinant of (33) gives

Ω(x) =

∣∣∣∣∂x′∂x

∣∣∣∣1/d :=

∣∣∣∣det
∂x′µ

∂xν

∣∣∣∣1/d . (35)

Here is another useful way to characterize conformal transformations. Start with the
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metric ds2 = gµν(x)dxµdxν , and replace x→ f(x). The result can be written

ds2 → ds2
f = Ω2(x)ds2 (36)

if and only if the transformation x′ = f(x) is conformal.

This is a practical way to find conformal transformations and to calculate Ω. Note,

however, that when we do a conformal transformation in CFT, we do not actually act

on the metric: ds2 is fixed.

We will now discuss conformal transformations in a CFT. As I mentioned, they act on

the coordinates by conformal isometries, but on fields they do not act like a coordinate

change. Unfortunately this means that from now on in this note, O′ means something

different: it will now denote the conformal transformation.

The conformal transformation of a spin-` primary operator is

O′(x′) = Ω(x)−∆+`R(x, x′)O(x) , Ω(x) =

∣∣∣∣∂x′∂x

∣∣∣∣1/d (37)

Equivalently, with y = x′ = f(x),

O′(y) = Ω̃(y)∆−`R(x, y)O(x) , Ω̃(y) =

∣∣∣∣∂x∂y
∣∣∣∣1/d . (38)

Aside: Often people swap x↔ x′, ie define x′ = f−1(x) and write the conformal transfor-
mation as

O′(x) =

∣∣∣∣∂x′∂x

∣∣∣∣(∆−`)/dR(x′, x)O(x′) (39)

I will not use this convention; see comments below (15). But for comparison to other
references, note that this means my Ω̃ is equal to the Ω that appears in, for example,
Simmons-Duffin’s and Rychkov’s lectures.
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For a dilatation, (37) and says

O′(λx) = λ−∆O(x) (40)

and (38) says O′(x) = λ∆O(λx).

Finite conformal transformations act as

UO(x)U−1 = O′(x) (41)

with U := eQ[ε]. Infinitessimally, for scalar operator

δO(x) = O′(x)−O(x) (42)

= [Q[ε],O(x)] (43)

= ε · ∂O +
∆

d
(∂ · ε)O (44)

where we set x′ = x + ε(x) in (38). The transformation of a spinning operator has

additional terms from the rotational part of the conformal transformation.

In a CFT, the vacuum state is invariant under all conformal transformations in d > 2,

and under the SO(2, 2) global subgroup in d = 2. Therefore, excluding the non-global

2d transformations, vacuum correlators are invariant under O(x)→ O′(x):

Conformal: 〈O(x1)O(x2) · · · 〉ds2 = 〈O′(x1)O′(x2) · · · 〉ds2 . (45)
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Equivalently,∗

Conformal′: 〈O(x) · · · 〉Ω2g(x)dx2 = 〈O′(x′) · · · 〉g(x)dx2 , Ω = |∂x′/∂x|1/d .
(49)

and note that Ω2g(x)dx2 = g(x′)(dx′)2. The symmetries (45) and (49) hold for all

operators, not just primaries, but the formula for O′ is different for non-primaries.

The Weyl transformation law is

Weyl: 〈O(x) · · · 〉Ω2ds2 = Ω(x)−∆ · · · 〈O(x) · · · 〉ds2 . (50)

This holds for any Ω2, and it generally changes the manifold. It is not a “symmetry”

because it relates two different theories, not states or operators in the same theory.

The special Weyl transformations with Ω = |∂x′/∂x|1/d can be reintepreted as confor-

mal transformations. Consider the Weyl transformation law for a conformal change of

coordinates x→ x′ with

(dx′)2 = Ω2dx2, Ω =

∣∣∣∣∂x′∂x

∣∣∣∣1/d (51)

Then the Weyl transformation (50) reduces to (49).

This causes endless confusion so let’s reiterate:

• The conformal transformation O(x) → O′(x) is a symmetry; observables are

invariant.

• Weyl invariance (for primaries) is the statement that the operator Ω−∆O(x) in

∗Derivation: In (19) we derived

〈O(x1) · · · 〉dx2 = 〈O(f−1(x1)) · · · 〉df2 (46)

where df2 = |∂f/∂x|1/ddx2 denotes the flat metric in the coordinate f . Evaluate this at xi = f(yi) ,

〈O(f(y1)) · · · 〉dx2 = 〈O(y1) · · · 〉|∂f/∂x|1/ddx2 (47)

On the left, do a conformal transformation to replace O(f(yi))→ O′(f(yi)). On the right, the operator is at x1 = y1,
so we can relabel the coordinate x→ y. Thus

〈O′(f(y1)) · · · 〉dx2 = 〈O(y1) · · · 〉df(y)2 (48)

This is (49) with x′ = f(x). (There is a probably an easier way to explain this but I couldn’t find it....)
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the original theory calculates correlators of a related theory in the metric Ω2ds2.

• These two statements overlap in the special case that the Weyl transformation

takes the form Ω = |∂x′/∂x|1/d.

When people say ‘do a conformal transformation’, they could mean two different things

depending on context. Sometimes they mean O(x) → O′(x), with the metric fixed,

which is a symmetry. Other times they mean O′(x′), with the metric fixed, which is

not a symmetry, but tells us the physics in the metric Ω2ds2. The latter is related to

Weyl transformations, but note that the operator O′(x′) is an operator in the original

theory on the original metric.

Example: Physics on the cylinder in 2d CFT

In 2d the cylinder is a conformal transformation of the plane, with the mapping

z = eiz
′
. (52)

The metrics on the plane and cylinder are

ds2
pl = dzdz̄ , z ∈ C (53)

ds2
cyl = dz′dz̄′, z′ ∼ z′ + 2π, z′ ∈ C (54)

and they are related as

ds2
pl = ei(z

′−z̄′)dz′dz̄′ = Ω2ds2
pl . (55)
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To find the physics on the cylinder, we can use the conformal transformation formula

(19). For example the stress tensor on the cylinder has

〈T (z′)〉cyl = 〈T (z′)〉dz′dz̄′ (56)

= 〈T ′(z′)〉dzdz̄ (57)

= 〈
(
∂z

∂z′

)2 [
T (z)− c

12
{z′, z}

]
〉dzdz̄ (58)

= − c

12

(
∂z

∂z′

)2

{z′, z} (59)

=
c

24
. (60)

This is the correct Casimir energy density on the cylinder.
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