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First
,
remember ordinary quantum mechanics

Simple Harmonic Oscillator
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QFF ( GN=0
,
but general curved manifolds)

Again , the Lorentzian path integral calculates a

transition amplitude,
all fields

space only
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This wavefunctional satisfies the Schrodinger equation ,
by construction

.
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So Euclidean Path integrals also compute transition amplitudes
,

but in
"

imaginary time
"

- really state overlaps .

(not unitary evolution)

Note the special role of the Hamiltonian : it generates

evolution from one

"

time slice
"

to the next .



The purpose of this lecture is to explain how to

think about QFT
, quantum states

,
and thermodynamics

with these cartoons
.
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States

"

cutting
"

a path integral defines a quantum state :
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Formally , a
"

quantum state
"

is a linear functional

on spatial field configurations , i.e. turns
"

01×7
"

→ complex
number

.

Quantum state ~ linear functional on spatial field data
. [ caveats . . .]
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Directs us how to impose
boundary condition at the cut
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is some crazy state of a 2d QFT on S
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depends only on spatial mf,
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Lorentzian vs
.
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These are Euclidean Path integrals, but they
define states in the physical Lorentzian theory .

Lorentzian evolution :

i

/ It←Lorentzian, eis/ CHI) =
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This picture denotes a path integral on Euclidean

manifold glued to a Lorentzian manifold
.

Euclidean P.I.
"

prepares a state
"

Lorentzian P.I. evolves in t
.



¥0 Ground State

Expand any state in energy eigenstates
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Euclidean evolution doimps all excitations
,

e-
TH
ly > = e-

+¥10> as c-→ no

Therefore,

10J =
mmmm

I.

P.I. on IR
,

✗ IRD-1

(Note : unnorrnalized)

1 "
'%

"

TÉ←µ*
,



But what boundary conditions do we put @ - no ?

Answer : regularity .

Any non- singular boundary condition will give to>

because excitations are infinitely damped .

Euclidean Correlations

QFT on space = IRD
-1

Its
[
Euclidean point (+25×2)
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Let's check the path integral agrees with the operator
version

.
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I usually read operators Right → Left to make

path integrals bottom→ top .



Density Matrix

ex : thermal state
^

p=
e- PH

1191514 ,
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e- In;
As usual

,
this picture means

"

to compute matrix elements
,

specify boundary conditions at cuts and do the path integral .
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This is a path integral with periodic boundary conditions
,
so

2- IN = f--16ps
Trace glues cuts together .

Euclidean Thermal Gorrelator

Gp =
1- Tre-131+01×1101%1
z
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Gpft,2) = Gplt-ip.it KMS condition

Finite temp . u periodic in imaginary time



Of course we can also go to Lorentzian
. Many of the thingy

a described in vacuum are still true
,
in particular all

real-time correlations are analytic continuations of this

Euclidean one
.

exercise Derive KMS from trace defn
.

of Gp
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Any path integral with 2 identically - shaped
SkT

cuts defines a density matrix :
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