

Holographic Principle 't Hooft ; Susshind

"All d.o.f. in quantum gravity are associated to the boundary of spacetime"

- O Observables @ po
- S = Area / 4Bit
 - In fact, Bekenstein:
 - Sanything & Area (static, spherical sym., ...)

Path integral argument: $Z(\beta) = ()G\beta$

This was a postulate about gravity. If gravity is equivalent to "QM on the boundary" then it becomes true by the ordinary Tre-BH path integral argument.

(closed universes ????)

AdS/CFT duality asymptotically In Nanti-de Sitter, this is true, and those "d.o.f." \equiv conformal field theory.

I will state this more carefully soon; 1st describe the players.

(Here d.o.f = local QFT. This is Not true in general.

Max. Symmetric, constant negative curvature

Embedded in Rd,2:

 $-\chi_{0}^{2} + \chi_{1}^{2} + \dots + \chi_{d}^{2} - \chi_{d+1}^{2} = -\int_{0}^{2}$

(Don't try to picture this ... 2 times !)

Solve by: $X_0 = l \cosh p \cos \tau$ $X_{d+1} = l \cosh p \sin \tau$ $X_{d+1} = l \sinh p n;$ $(\Sigma n;^2 = l \Rightarrow S^{d+1})$ \Rightarrow $dS^2 = l^2 \left[-\cosh^2 p d\tau^2 + dp^2 + \sinh^2 p d\Omega^2_{d-1} \right]$ "global coords."

UNWRAP TE (-20,20)

Isometries: SO(d,2) (see embedding ! $X_{0}X_{1} + X_{1}X_{0}$) etc.)

CFT EQFT with conformal symmetry EX: free massless scalar Z = (2\$)2 [alulays massless!] Conformal group = diffeos such that ds² ~ D²(X) ds² minu. under X^m -> X^m (X) $ds^2 = n_{\mu\nu} dx^{\mu} dx^{\nu}$ $\rightarrow n_{\nu'} dx'' dx'' = n_{\nu'\nu'} \frac{\partial x''}{\partial x''} dx'' \frac{\partial x''}{\partial x''} dx''$ So $\left(\frac{\partial x'}{\partial x}\right)^T \mathcal{N}\left(\frac{\partial x'}{\partial x}\right) = \mathcal{D}^2(x) \mathcal{N}$ Conformal group: 50(d,2) Euclidean conformal group (n + Snu): SO(d+1,1) so(d,2) = Poincare + "special conformal" $k_{\mu} = 2\chi_{\mu}(\chi^{\alpha}\partial_{\alpha}) - \chi^{2}\partial_{\mu}$ + dilatation $f = \chi^{m} \partial_{m}$ /scale transf.

More generally Zyrow w/ boundary condition $dS^2 \rightarrow \frac{J^2}{Z^2} \left(dZ^2 + h_{ij}(\vec{x}) dx^i dx^j \right) + O(Z^{4-2})$ $\phi \rightarrow z^{*} J(\dot{x}) + subleading$ Zcft [hij, J] fixed Sther background fields $T_{cft} \rightarrow T_{cft} + \int d^4 x O^{*}(x) J(x)$ CFT lives oa « GKPW dictionary" Comments * large Naos in CFT to account for SBH = Area N~ (lAds) d-1 N~ (lAds) But <u>sponse</u>: O(1) states @ low energies * strong/weak Example: Transport; entropy density

* Conformal symmetries of CFT on Rd+,1

= isometries of AdSd+1

EX. Add metric $ds^2 = \int_{0}^{2} \left(dz^2 - dt^2 + dx^2 \right)$

 $z \rightarrow \lambda z$ $z \rightarrow \lambda z$ $\overline{x} \rightarrow \lambda \overline{x}$ ds^2 inversiont

Consider a hypersurface @

3 = 5

of Scale transf. in CFT

= moving in radial direction in AdS
(2)

- "deep in bulk" ~ IR in CFT "near bodry" ~ UV in CFT
 - [roughly !!]
 - The more careful statement is that taking a fixed object + moving in 2 moves it into UVIR by scale transformation.
 - So for example high-E scattering deep into bulk can probe UV of CFT!
- + Top-down
 - ex IIB strings on AdS5xS5 = N=4 Super Yang-Mills
 - "Botton up

Semiclassial EFT in AdS as seator of large-N CFT ex. AdS/CMT - microscopic theory of high-Tc coundes is Not IIB stringet.

Similarlys "black branes" have near-horizon AdS X M noutside view An dosenver 3 cannot distinguish between); = 's (;)); : CFTd' Km i leste