
the coe�cient is fixed by the conformal Ward identity to be

�T ⇠ �O� 

c
, (2.12)

which is obviously positive. But in slightly di↵erent situations discussed below

the constraints obtained by identical reasoning are nontrivial.

6. The constraint can also be stated using the maximum modulus principle: the

magnitude of an analytic function in a region D is bounded by the maximum

magnitude on @D. There is simply no way for a function of the form (2.6) to be

analytic inside the semicircle in (2.8), bounded by 1 on the real line, and have

� < 0. This can be easily checked by finding the maximum of this function along

the semicircle with |�| = R, and comparing to the maximum along the semicircle

|�| = R� �R, which must be smaller. Similar reasoning rules out the possibility

that the dominant exchange has ` > 2, because in this case both choices of sign

violate the maximum modulus principle. This version of the argument is inspired

by the ‘signalling’ argument in [6] and the chaos bound [41].

Note that we do not assume causality; we use the conformal block expansion and

reflection positivity to derive causality, then apply this result to derive the log bound.

If we had simply assumed causality then the argument for log bounds would be signif-

icantly shorter.

We go through all of these steps in great detail in the rest of the paper.

3 Causality review

Causality requires commutators to vanish outside the light-cone:2

[O1(x), O2(0)] = 0, x2 > 0, x 2 Rd�1,1 , (3.2)

2 Here is the standard argument for (3.2): The theory cannot be quantized in a way consistent
with boost invariance if (3.2) is violated. To see this, add a local perturbation to the Hamiltonian,
Hint = �O2(x, t)�(x)�(t), and calculate in the interaction picture

h⌦|O1(x)|⌦i = h0|ei
R

t

�1 HintdtO1(x)e
�i

R
t

�1 Hintdt|0i (3.1)

= h0|O1(x)|0i+ �⇥(t)h0|[O1(x), O2(0)]|0i+ · · · .

For spacelike separation, the step function ⇥(t) is not invariant under boosts, so di↵erent coordinate
systems disagree about the O(�) term if it is non-zero. The same argument can be repeated in any
state, so (3.2) holds as an operator equation.

10



where O1,2 are local operators inserted in Minkowski space. In this section we will re-

view how this requirement is encoded in the analytic structure of correlation functions,

first in a general Lorentz-invariant QFT and then in CFT. This is an informal deriva-

tion of the position-space i✏ prescription stated in standard references, for example the

textbook by Haag [9].

3.1 Euclidean and Lorentzian correlators

In a general Lorentz-invariant QFT, consider the Euclidean correlator on a plane,

G(x1, . . . , xn) = hO1(x1) . . . On(xn)i . (3.3)

This is a single valued, permutation invariant function of the positions

xi = (⌧i, x
1
i
, . . . , xd�1

i
) 2 Rd . (3.4)

Here ⌧ is a direction, chosen arbitrarily, that will play the role of imaginary time.

G is analytic away from coincident points, and has no branch cuts as long as all n

points remain Euclidean. This reflects the fact that in Euclidean signature, operators

commute:

[O1(x1), O2(x2)] = 0, x1,2 2 Rd , x1 6= x2 . (3.5)

Lorentzian correlators can be computed (or defined) by analytically continuing ⌧i ! iti,

with ti real. As functions of the complex ⌧i, the correlator has an intricate structure

of singularities and branch cuts, leading to ambiguities in the analytic continuation.

Each choice that we make in the analytic continuation translates into a choice of

operator ordering in Lorentzian signature, so these ambiguities are responsible for non-

vanishing commutators. All of the Lorentzian correlators are analytic continuations of

each other.3

For instance, suppose we aim to compute the Lorentzian correlation function with

all ti’s zero except t2, and displacement only in the direction x1 ⌘ y, pictured in

3This is simple to prove: the Lorentzian correlators with various orderings are equal when points
are spacelike separated, so it is a standard fact of complex analysis (the edge-of-the-wedge theorem)
that they must all be related by analytic continuation in the positions.

11



Lorentzian signature as follows:

...
(3.6)

The correlator, viewed as a function of complex ⌧2 with all other arguments held fixed,

has singularities along the imaginary-⌧2 axis where O2 hits the light cones of the other

operators:
...

...

(3.7)

In an interacting theory, these singularities (red dots) are branch points, and we will

orient the branch cuts (blue) so that they are ‘almost vertical’ as in the figure. In order

to compute the correlator when O2 is timelike separated from other operators, we need

to continue from the point ⌧2 = t2 on the positive real axis to the point ⌧2 = it2 on

the imaginary axis, which is above some light-cone singularities. Each time we pass a

singularity, we must choose whether to pass to the right or to the left. Assume without

loss of generality that t2 > 0. Then passing to the right of a singularity puts the

operators into time ordering in the resulting Lorentzian correlator, and passing to the

left puts the operators in anti-time-order.

For example, suppose O2 is in the future light cones of O1 and O3, but is space-

like separated from other operators. Then, starting from the single-valued Euclidean

12



correlator, we can choose to go to Lorentzian signature along four di↵erent contours:

(3.8)

By choosing a contour, we mean that the analytic continuation is done in a way that is

continuous along the given contour. These correspond, respectively, to the Lorentzian

correlators

(a) hO2O1O3 · · · i = hT [O1O2O3 · · · ]i

(b) hO3O2O1 · · · i

(c) hO1O2O3 · · · i

(d) hO1O3O2 · · · i .

(a) is fully time-ordered, (d) is fully anti-time-ordered, and the other two are mixed.

If more than two operators were timelike-separated, then we would also need to worry

about the ordering of the various branch cuts with respect to each other.

This recipe is motivated by the following observation. The branch cuts appear

when operators become timelike separated, so to get a reasonable Lorentzian theory,

the commutator must be equal to the discontinuity across the cut. This implies that,

for example, the function defined along contour (a) in (3.8) di↵ers from the function

defined along (b) by adding a commutator, [O2, O3]. Combined with the fact that all

Lorentzian correlators must continue to the (same) Euclidean correlator when operators

are spacelike separated, this essentially fixes the prescription to what we have just

described. See [9] and below for references to a full derivation.

3.2 Causality

In order to diagnose whether a theory is causal, the actual value of the commutator is

not needed – the only question is where it is non-zero. The answer, in the language
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of the analytically continued correlation functions, is that the commutator becomes

non-zero when we encounter a singularity in the complex time plane and are forced to

chose a contour.

The Euclidean correlator is singular only at coincident points. This immediately

leads to a causal Lorentzian correlator on the first sheet of the ⌧2 plane, which is the

sheet pictured in (3.7). To see this, note that a singularity at x2 = 0 in Euclidean

continues to a singularity at x2 = 0 in Lorentzian, which is obviously on the light cone.

Thus, in the configuration discussed above, h[O2, O1]O3 · · · i and h[O2, O3]O1 · · · i are

manifestly causal: they become non-zero at the branch points drawn in that figure,

which start precisely at the light cones. However, as we pass onto another sheet by

crossing a branch cut, singularities could move. For example, the commutator

hO1[O2, O3] · · · i (3.9)

becomes non-zero when we encounter the O3 singularity along this contour:

. (3.10)

It is not at all obvious that this singularity is at the O3 lightcone, ⌧2 = i(y3 � y2). If,

as we pass through the O1 branch cut, this O2 ! O3 singularity shifts upwards along

the imaginary axis, then the theory exhibits a time delay. If it shifts downwards, then

the commutator becomes non-zero earlier than expected (as a function of t2) and the

theory is acausal.

To summarize: Starting from a Euclidean correlator, causality on the first sheet is

obvious. The non-trivial statement about causality is a constraint on how singularities

in the complex-⌧ plane move around as we pass through other light-cone branch cuts.
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3.3 Reconstruction theorems and the i✏ prescription

The Osterwalder-Schrader reconstruction theorem [8] states that well behaved Eu-

clidean correlators, upon analytic continuation, result in Lorentzian correlators that

obey the Wightman axioms. The definition of a well behaved Euclidean correlator

is (i) analytic away from coincident points, (ii) SO(d) invariant, (iii) permutation in-

variant, (iv) reflection positive, and (v) obeying certain growth conditions. Reflection

positivity is the statement that certain correlators are positive and is discussed more

below.

Lüscher and Mack extended this result to conformal field theory defined on the

Euclidean plane, showing that the resulting theory is well defined and conformally

invariant not only in Minkowski space but on the Lorentzian cylinder [44].

A byproduct of these reconstruction theorems is a simple i✏ prescription to compute

Lorentzian correlators, with any ordering, from the analytically continued Euclidean

correlators:

hO1(t1, ~x1)O2(t2, ~x2) · · ·On(tn, ~xn)i = lim
✏j!0

hO1(t1 � i✏1, ~x1) · · ·On(tn � i✏n, ~xn)i (3.11)

where the limit is taken with ✏1 > ✏2 > · · · > ✏n > 0. The correlator on the rhs

is analytic for any finite ✏k obeying these inequalities, which also confirms that the

singularities we have been discussing always lie on the imaginary axis.

This i✏ prescription is identical to our discussion above. It shifts the branch cuts

to the left or right of the imaginary axis, and this enforces the contour choices that we

described. For example contour (c) in (3.8) corresponds to the i✏ prescription

, (3.12)

where the i✏’s move the lightcone singularities o↵ the imaginary-⌧2 axis as indicated.4

4Note that inserting i✏’s into the correlator is meaningless unless we also specify the positions of all
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In principle, the reconstruction theorem completely answers the question of when

Euclidean correlators define a causal theory. Our point of view, however, will be that

we assume only some limited information about the CFT — for example, there is some

light operator of a particular dimension and spin, exchanged in a four-point function,

perhaps with some particular OPE coe�cients — and we want to know whether this

is compatible with causality. This limited data may or may not come from a full QFT

obeying the Euclidean axioms. The reconstruction theorem does not answer this type

of question in any obvious way. In other words, the reconstruction theorem tells us

that causality violation in Lorentzian signature must imply some problem in Euclidean

signature, but we want to track down exactly what that problem is.

3.4 Examples

Conformal 2-point function

The Euclidean 2-point function in CFT is (⌧ 2+x2)��. This is single-valued in Euclidean

space, since the term in parenthesis is non-negative. Using the i✏ prescription, the

Lorentzian correlators for t1 > x1 are

hO(t1, x1)O(0, 0)i = exp
�
�� log(�(t1 � i✏)2 + x2

1)
�
= e�i⇡�(t21 � x2

1)
�� , (3.13)

and

hO(0, 0)O(t1, x1)i = exp
�
�� log(�(t1 + i✏)2 + x2

1)
�
= ei⇡�(t21 � x2

1)
�� , (3.14)

where we placed the branch cut of log on the negative real axis, as in (3.12).

Alternatively, in the language of paths instead of i✏’s, we start from the Euclidean

correlator (zz̄)��, where z = x + i⌧ , z̄ = x� i⌧ . To find the time-ordered Lorentzian

correlator we set ⌧ = t2ei� and follow the path � 2 [0, ⇡/2]. The result agrees with

(3.13). The anti-time-ordering path goes the other way around the singularity at z = 0,

so it di↵ers by z ! ze�2⇡i, giving (3.14).

the branch cuts. On the complex ⌧2 plane, this does not lead to any confusion because the choice is
always implicitly ‘straight upwards’ as in the figure. However when we write our correlators in terms
of conformal cross ratios it is not obvious where to place the branch cuts on the z, z̄ planes. For this
reason we will always give the contour description and avoid i✏’s entirely in our calculations.
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Free 2-point function

A free massless scalar in d dimensions has � = d/2� 1. In even dimensions, this is an

integer, so there are no branch cuts in the Lorentzian 2-point function. It follows that

h[�(x),�(y)]i = 0 at timelike separation. Standard free field methods confirm that the

commutator in even dimensions is supported only on the lightcone, (x� y)2 = 0.

3.5 CFT 4-point functions

We now specialize to 4-point functions in a conformal field theory. Take the operators

O1, O3 and O4 to be fixed and spacelike separated at ⌧ = 0, while O2 is inserted at an

arbitrary time:

x1 = (0, . . . , 0), x2 = (⌧2, y2, 0, . . . , 0), x3 = (0, 1, . . . , 0), x4 = (0,1, 0, . . . , 0) ,

(3.15)

with

0 < y2 <
1

2
. (3.16)

This is similar to (3.6) but with O4 moved to infinity.5 Only one of the operators is at

t 6= 0, so the others are all spacelike separated. The conformal cross ratios are defined

by

u =
x2
12x

2
34

x2
13x

2
24

, v =
x2
14x

2
23

x2
13x

2
24

. (3.17)

Another convenient notation is

u = zz̄, v = (1� z)(1� z̄) , (3.18)

which for (3.15) becomes6

z = y2 + i⌧2, z̄ = y2 � i⌧2 . (3.19)

In Euclidean signature, ⌧2 is real and z̄ = z⇤. In Lorentzian signature, z = y2 � t2 and

z̄ = y2 + t2 are independent real numbers.

5O(1) ⌘ limy!1 y2�OO(y).
6(3.18) is invariant under z $ z̄, but we will always choose the solutions of the quadratic equation

corresponding to (3.19), so this distinguishes z and z̄.
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The Euclidean correlator G(z, z⇤) has the short-distance singularities

G(z, z⇤) ⇠ (zz⇤)�
1
2 (�1+�2) as z ! 0 (3.20)

and

G(z, z⇤) ⇠ ((1� z)(1� z⇤))�
1
2 (�2+�3) as z ! 1 . (3.21)

The various Lorentzian correlators are computed by analytic continuation ⌧2 ! it2.

Denote by G(z, z̄) the time-ordered correlator, defined by analytic continuation along

the contour (a) in (3.8). Then for real z and z̄, and O2 in the future lightcone of both

O1 and O3, the contours in (3.8) correspond to the functions

(a) G(z, z̄) = hO2O1O3O4i (3.22)

(b) G(z, z̄)|(z̄�1)!e�2⇡i(z̄�1) = hO3O2O1O4i

(c) G(z, z̄)|z!e�2⇡iz = hO1O2O3O4i

(d) G(z, z̄)|z!e�2⇡iz,(z̄�z̄0)!e�2⇡i(z̄�z̄0) = hO1O3O2O4i .

These follow from the fact that the first singularity above the real axis in (3.8) is z = 0,

and the second is z̄ = 1. The subscripts indicate how to go around these singularities.

In the last line, z̄0 is defined to be the singularity of G(ze�2⇡i, z̄) as a function z̄:

G(ze�2⇡i, z̄) ! 1 as z̄ ! z̄0 , (3.23)

coming from O3, depicted in (3.10). According to the reconstruction theorems, it must

lie on the real axis, Im z̄0 = 0 (so that the singularity in the ⌧2 plane lies on the

imaginary axis). Comparing contours (c) and (d), the 4-point function is causal if and

only if

Re z̄0 � 1 . (3.24)

4 The Lorentzian OPE

In this section we review the Euclidean OPE in d-dimensional CFT, derive some con-

sequences of reflection positivity, and discuss to what extent the OPE can be applied

in Lorentzian correlators. For the simplest case where only one operator is timelike

separated from the others, we show that there is a convergent OPE channel, and use

18


