
9 Symmetries of AdS3

This section consists entirely of exercises. If you are not doing the exercises, then read

through them anyway, since this material will be used later in the course. The main

goal of this section is derive the famous result of Brown and Henneaux on the central

charge of AdS
3

. This was done in the 80s, using slightly di↵erent techniques from what

we’ll use here, and later came to play an important role in AdS/CFT, as we’ll see later.

9.1 Exercise: Metric of AdS3

Anti-de Sitter space is a constant-negative-curvature spacetime. It is the maximally

symmetric solution of Einstein’s equation with a negative cosmological constant. AdSD

can be realized as a hyperboloid embedded in a D + 1-dimensional geometry. In this

section we will talk about AdS
3

, which is the hyperboloid

XAXA = �`2 (9.1)

where A = 0, 1, 2, 3 is an index in the space Minkowski
2

⇥ Minkowski
2

, with metric

HABdXAdXB = �dX2

0

+ dX2

1

+ dX2

2

� dX2

3

. (9.2)

To find intrinsic coordinates on AdS
3

, we just need to solve (9.1). One way to solve

this equation is by

X
0

= ` cosh ⇢ cos t, X
1

= ` sinh ⇢ sin �, X
2

= ` sinh ⇢ cos �, X
3

= ` cosh ⇢ sin t .

(9.3)

(a) Check that this solves (9.1), and use (9.2) to find the induced metric on the hyper-

boloid.

Answer:

ds2 = `2(� cosh2 ⇢ dt2 + d⇢2 + sinh2 ⇢ d�2) . (9.4)

These are global coordinates on AdS
3

. Although on the hyperboloid (9.1) we can see

from (9.3) that t is a periodic coordinate, when we say ‘AdS
3

’ we will always mean
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the space in which t is ‘unwrapped’, t 2 (�1,1) (the universal covering space of the

hyperboloid).

(b) Find the cosmological constant in terms of the AdS radius `.

9.2 Exercise: Isometries

AdS
3

inherits the isometries of the embedding space that preserve the hyperboloid.

(For the same reason that the isometries of S2 are inherited from rotations in R3.) The

group of rotations+boosts in a 4d geometry with signature (+, +,�,�) is SO(2, 2), so

we expect this to be the isometry group of AdS
3

. In this problem we’ll confirm this.

(a) As an example, consider the boost vector

V = X1@X0 + X0@X1 (9.5)

in the embedding space (9.2). This preserves the hyperboloid, since under XA !
XA � V A, the lhs side of (9.1) is unchanged to linear order (check this).

Write V as an isometry of AdS
3

, in the coordinates (9.4). To do this, first define the

projection tensor

PA
µ =

@XA

@xµ
(9.6)

where xµ are the coordinates of AdS
3

. This can be used to convert the 4-vector V A

into a tensor living on the hyperboloid,

�µ = PA
µ VA . (9.7)

Find �µ, and check that it is a Killing vector of the metric (9.4).

This same procedure can be used to find all of the Killing vectors of AdS, but I will
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spare you the trouble. The answer, in a convenient basis, is

⇣�1

= 1

2

⇥
tanh(⇢)e�i(t+�)@t + coth(⇢)e�i(t+�)@� + ie�i(t+�)@⇢

⇤
(9.8)

⇣
0

= 1

2

(@t + @�)

⇣
1

= 1

2

⇥
tanh(⇢)ei(t+�)@t + coth(⇢)ei(t+�)@� � iei(t+�)@⇢

⇤

⇣̄�1

= 1

2

⇥
tanh(⇢)e�i(t��)@t � coth(⇢)e�i(t��)@� + ie�i(t��)@⇢

⇤

⇣̄
0

= 1

2

(@t � @�)

⇣̄
1

= 1

2

⇥
tanh(⇢)ei(t��)@t � coth(⇢)ei(t+�)@� � iei(t+�)@⇢

⇤

Note that the subscripts here are just labels, not spacetime indices.

(b) Check that the vectors ⇣�1

, ⇣
0

, ⇣
1

are Killing vectors.

(c) Now check that they obey the SL(2, R) algebra:

[L
1

, L�1

] = 2L
0

, [L
1

, L
0

] = L
1

, [L�1

, L
0

] = �L�1

. (9.9)

That is, the Killing vectors obey this algebra under Lie brackets, with an additional i,

for example

i{⇣
1

, ⇣�1

}LB = 2⇣
0

, etc. (9.10)

The barred zetas in (9.8) commute with the unbarred zetas, and form another SL(2, R)

algebra. Therefore the isometries of AdS
3

form the algebra

SL(2, R)L ⇥ SL(2, R)R. (9.11)

The subscripts mean ‘left’ and ‘right’, since the ⇣’s involve only the ‘left-moving’ com-

bination t + � and the ⇣̄’s involve the ‘right-moving’ combination t� �.

Note that as a Lie algebra, of SO(2, 2) = SL(2, R)⇥SL(2, R). This is a special feature

of AdS
3

. In general the AdSD isometry group is SO(D � 1, 2), which does not split

into two factors.
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9.3 Exercise: Conserved charges

(a) Do the coordinate change

t± = t± � , ⇢ = log (2r) , (9.12)

and expand the metric (9.4) at large r. Show that to leading order

ds2 = `2

✓
dr2

r2

� r2dt+dt�
◆

. (9.13)

These are called Poincaré coordinates, and in fact this metric is an exact solution of

Einstein’s equation – it covers a subregion of AdS
3

called the Poincaré patch.

A spacetime is called asymptotically AdS if it approaches (9.13) as r !1.53

(b) Consider the asymptotically AdS spacetime

ds2 = `2

✓
dr2

r2

� r2dt+dt�
◆

+ h
++

(dt+)2 + h��(dt�)2 + 2h
+�dt+dt� , (9.14)

where the h’s are arbitrary functions of t+ and t� but independent of r. We will

compute the boundary stress tensor (Brown-York tensor) and use it to define the

energy and other conserved charges in AdS
3

.

The boundary stress tensor is defined as the variation of the on-shell action

T ij ⌘ 2p��

�Son�shell

��ij

(9.15)

where the action is

S[g] =
1

16⇡

Z

M

p�g(R� 2⇤) +
1

8⇡

Z

@M

p��K +
a

8⇡

Z

@M

p�� . (9.16)

For the bulk term and Gibbons-Hawking term, we can use our formulae from flat space

given in previous lectures. The last term is a counterterm, which takes the place of the

53Specifically, the subleading components of the metric must have a certain fall-o↵ at large r. These
conditions are basically chosen so that the Hamiltonian can be defined.
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‘background subtraction’ we did in flat space. This leads to

T ij =
1

8⇡

⇥
Kij �K�ij + ã�ij

⇤
. (9.17)

Choose the counterterm coe�cient ã so that Tij is finite as the cuto↵ surface r
0

!1.

Compute T
++

, T��, and T
+� to first order in the perturbation hij in the limit r

0

!1.

Reference: Balasubramanian and Kraus, hep-th/9902121.

(c) Compute the energy of the spacetime (9.14). It is defined as

E =
1

`

Z
2⇡

0

d�
p

�uiTij⇣
j (9.18)

where ui is the timelike normal to a fixed-t slice, and ⇣ = @t. (The overall 1/` is a

convention, necessary due to the fact we are using dimensionless coordinates.)

(d) An example of an asymptotically AdS spacetime is the BTZ black hole,

ds2 = `2


�(r2 � 8M)dt2 +

dr2

r2 � 8M
+ r2d�2

�
. (9.19)

Check that for this spacetime

E = M . (9.20)

To use your results of the previous problem in this calculation you must first change

coordinates to put it in the form (9.14). In particular you will need to redefine r0 = r0(r)

to eliminate the perturbation to grr.

(e) Compute the energy of global AdS, by keeping the subleading terms in the coordi-

nate transformation (9.12) and plugging them into your formula for the stress tensor.

(Hint: the answer is negative. That’s OK, this is just a choice of zero for energy.)

Comment: We’ve focused on the energy, but we could compute conserved charges

corresponding to all the other Killing vectors in exactly the same way.
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