
8 Symmetries and the Hamiltonian

Throughout the discussion of black hole thermodynamics, we have always assumed

energy = M . Now we will introduce the Hamiltonian formulation of GR and show

how to define conserved charges associated to spacetime symmetries. The energy is a

special case, associated to time-translation symmetry. There are quicker ways to reach

the conclusion energy = M (see Carroll’s book), but we will take the more careful route

because it’s useful later.

8.1 Parameterized Systems

[References: The original paper is very nice and still worth reading, especially sections

1-3: “The Dynamics of General Relativity” by Arnowitt, Deser, Misner (ADM), 1962

(but available on arXiv at gr-qc/0405109). See also appendix E of Wald’s textbook,

and for full detail see Poisson’s Relativist’s Toolkit chapter 4.]

Time plays a special role in the canonical formulation of quantum mechanics, and in

the Hamiltonian approach to classical mechanics, since it is the independent variable.

In GR, time t is just an arbitrary parameter, and the dynamics are reparameterization-

invariant under t ! t0(t), since this is just a special case of di↵eomorphisms. To see

how this fits into Hamiltonian mechanics we first consider a simple analog in quantum

mechanics.

Suppose we have a system with a single degree of freedom q(t) with conjugate momen-

tum p, and action

I =

Z
dtL. (8.1)

The Hamiltonian is the Legendre transform

H(p, q) = pq̇ � L(q, q̇)|p=@L/@q̇ . (8.2)

Hamilton’s equations of motion are

dp

dt
= �@H

@q
,

dq

dt
=

@H

@p
. (8.3)
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The independent variable t is special. It labels the dynamics but does not participate

as a degree of freedom. In GR, time is just an arbitrary label – it is not special, and

the theory is invariant under time reparameterizations. To mimic this in our simple

system with 1 dof, we will introduce a fake time-reparameterizations symmetry. To

do this we label the dynamics by an arbitrary parameter ⌧ , and introduce a physical

‘clock’ variable T , treated as a dynamical degree of freedom. So instead consider the

system of variables and conjugate momenta

q(⌧), p(⌧), T (⌧), ⇧(⌧) (8.4)

where ⇧ is the momentum conjugate to T . This is equivalent to the original 1 dof if

we use the ‘parameterized’ action

I 0 =

Z
d⌧(pq0 + ⇧T 0 �NR) , R ⌘ ⇧ + H(p, q) , (8.5)

where prime = d/d⌧ . Here N(⌧) is a Lagrange multiplier, which enforces the ‘constraint

equation’

⇧ + H(p, q) = 0 . (8.6)

The action (8.5) is reparameterization invariant under ⌧̄ = ⌧̄(⌧), since after all ⌧ is just

a label that we invented. The Hamiltonian of the enlarged system is simply

H 0 = N(⇧ + H(p, q)) , (8.7)

so it vanishes on-shell due to the constraint equation!

To recap: we introduced time-covariance by adding a fake degree of freedom, and im-

posing a constraint. The resulting Hamiltonian vanishes on-shell, because it generates

⌧ -translations, which is just part of the reparameterization symmetry.

To reverse the procedure, i.e., to go from the parameterized action back to the ordinary

action with 1 dof, we plug in the constraint

I 0 =

Z
d⌧ [pq0 �H(p, q)T 0] (8.8)
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and then rewrite the dynamics in terms of the clock variable:

I 0 =

Z
dT [pq̇ �H(p, q)] (8.9)

where dot = d/dT . So we see that T is just the original physical time t.

The equation of motion for T is

T 0 = N
@

@T
(⇧ + H) (8.10)

But both T 0 and N are unspecified by the dynamics. For example we are free to pick

the ‘gauge condition’ T = ⌧ , which corresponds to some particular choice of N(⌧).

8.2 The ADM Hamiltonian

GR is already a ‘parameterized system:’ the t coordinate is like our ⌧ coordinate above,

and we will see that the Hamiltonian is very much like (8.7).

The canonical variables are

hij(~x, t), ⇡ij(~x, t) (8.11)

where hij are the space components of the metric, and ⇡ij are their canonical conjugates.

The full spacetime metric is parameterized as

ds2 = �N2dt2 + hij(dxi + N idt)(dxj + N jdt) . (8.12)

N =
p�1/gtt is called the ‘lapse’ and N i = N2gti is the ‘shift’. These are Lagrange

multipliers, just like N in our discussion above. They are not fixed by the dynamics,

but a choice of parameterization. In other words, any geometry can be sliced into

‘time’ and ‘space’ in a such a way that N and N i can be set to any functions you like.

They are called the lapse and shift because they correspond to our choice of how our

coordinates on a time-slice of fixed t = t
0

are related to the coordinates on a time-slice

of fixed t = t
0

+ �t. The flow vector, which tells you the arrow of time from one slice
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to the next, is43

⇣µ = Nuµ + Nµ . (8.13)

In the coodinates (8.12), ⇣ = @t, but we will treat N and Na as arbitrary parameters.

The action of GR, discussed above but now in Lorentzian signature, is

I =
1

16⇡

Z

M

d4x
p�gR� 1

8⇡

Z

@M

d3x
p��(K �K

0

) (8.14)

where K
0

is the subtraction term (the extrinsic curvature of the boundary embedded

in flat spacetime). Recall that the on-shell variation is

�Ion�shell = 1

2

Z

@M

d3x
p��T ij�gij, (8.15)

where the ‘boundary stress tensor’ (aka Brown-York stress tensor) is

T ij =
1

8⇡

�
Kij � �ijK

�� background subtraction . (8.16)

After quite a bit of work44, the full o↵-shell action (8.14) can be written

I =

Z

M

d4x
h
⇡ijḣij �NH�N iHi

i
�

Z

@M

d3x
p

�uµTµ⌫⇣
µ , (8.17)

From here we can read o↵ the Hamiltonian45

H[⇣] =

Z

⌃

d3x (NH + N iHi) +

Z

@⌃

d2x
p

�uµTµ⌫⇣
⌫ , (8.18)

which is an integral over a spatial slice ⌃.

Now to explain all these terms: H and Hi are called the Hamiltonian and momentum

constraints, which are essentially the G
00

and G
0i components of the Einstein equations

(see Wald for explicit formulae). These components of the equations of motion involve

only 1st time derivatives. They are called ‘constraints’ because if we think of GR as

an initial value problem – specify initial data, then evolve in time according to the

43Here Nµ = hµ
aNa, where hµ⌫ = gµ⌫ + uµu⌫ , i.e., hµ

a is the projector onto a spatial slice.
44See Brown and York, “Quasilocal energy and conserved charges derived from the gravitational

action, ” 1993, and also Poisson’s Relativist’s Toolkit, Chapter 4.
45The bulk term is called the ‘ADM Hamiltonian’. As far as I know, the boundary terms were first

derived by Brown and York, and by Hawking and Horowitz.
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dynamical equations – these are constraints on the allowed initial data hij, ḣij at t = 0.

This is in contrast to other, dynamical equations of motion, which tell you how that

data evolves in time.46 Finally uµ is the timelike unit normal on the boundary, with

u2 = �1.

A few remarks about our final answer (8.18):

• The bulk term vanishes on-shell due to the constraint equations. The boundary

term does not vanish in general. This is related to the fact that di↵eomorphisms

acting on the boundary are ‘real’ dynamics, whereas di↵eomorphisms away from

the boundary are just redundancies.

• We have written the Hamiltonian as a functional of the lapse and shift, since the

dynamics leaves ⇣ unspecified. This corresponds to a choice of time evolution.

That is, the Dirac bracket47 of the Hamiltonian with any function X of the

canonical variables is

{H[⇣], X} = L⇣X . (8.19)

If we choose, for example, ⇣µ = (1, 0), then this Hamiltonian generates time

evolution in the t-direction.

• The on-shell Hamiltonian looks just like the Hamiltonian of a 3-dimensional the-

ory living on the boundary with a 3-dimensional stress tensor Tµ⌫ . We will see

that at least in AdS this is actually literally the case.

Exercise: Constraints in electrodynamics

Di�culty level: medium

Derive the Hamiltonian of electrodynamics. Start from the action I = �1

4

R
d4xF 2

µ⌫ ,

46In electrodynamics, the action involves only first derivatives of At, so this is a Lagrange multiplier
like the lapse in GR. The Hamiltonian of electrodynamics has a term AtC where C = r ·E � ⇢matter

is the Gauss constraint.
47The Dirac bracket is the Poisson bracket, but accounting for gauge symmetries which modify the

bracket acting on physical fields. The Dirac bracket is what becomes a commutator in the quantum
theory.
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identify the canonical coordinates and conjugate momenta, and rewrite it like we did

for gravity in (8.17). Identify the Lagrange multiplier(s) and constraint(s).

In gravity, we gave a physical interpretation of the lapse and shift Lagrange multipliers

as a choice of foliation of spacetime. What is the analogous interpretation of At in

electrodynamics? (It might be useful to couple to a matter field to answer this.)

Reference: Appendix E of Wald. But write your answers in terms of the vector

potential, not ~E and ~B.

8.3 Energy

As usual, the numerical value of the Hamiltonian, evaluated on a solution, is the

energy. In GR we must specify a lapse and shift to define the Hamiltonian. The energy

is associated to time translations, so we identify the energy as the Hamiltonian with

N ! 1 and Na ! 0 at the boundary. For this choice, the surface deformation vector

⇣
(t) has components ⇣µ

(t) = (1, 0, 0, 0), so

E ⌘ H[⇣
(t)]|on�shell =

Z

@⌃

d2x
p

�uiTit . (8.20)

This is the usual (covariantized) expression for the energy in terms of the stress tensor.48

We must impose boundary conditions to ensure that energy is conserved. It can be

shown that the Grµ components of the Einstein equations49 are

riT
ij = �n↵T↵j

matter , (8.21)

where n is the spacelike unit normal to the boundary. Therefore, if we impose the

boundary condition that matter fields go to zero fast enough as r ! 1, then the

48This equation agrees with other definitions of energy you may have seen, like the Komar formula,
whenever those definitions apply.

49
i.e., the ‘constraints’ in a radial slicing of the spacetime, which contain only first order r-

derivatives.
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boundary stress tensor is conserved,

riT
ij = 0 . (8.22)

If in addition

r
(i⇣j) = 0 as r !1 (8.23)

then the energy current ji = T i
j⇣

j is conserved, riji = 0. In this case the energy is

independent of what slice ⌃ we choose to evaluate (8.20):

E(⌃)� E(⌃0) =

Z

@⌃

d2x
p

�uiTit �
Z

@⌃

0
d2x
p

�uiTit =

Z
d3x
p��ri

�
T ij⇣j

�
= 0 .

(8.24)

The equation (8.23) is the Killing equation, so the conclusion is that energy is conserved

as long as (i) matter fields fall o↵ fast enough near infinity, and (ii) ⇣ = @t is an

asymptotic Killing vector.

What about matter?

The expression (8.20) includes the contribution from matter. The constraints ensure

that the metric at infinity knows about any matter localized in the interior: the matter

backreacts on the metric, and therefore contributes at infinity. This is just like the

Gauss law in E&M.

8.4 Other conserved charges

Other asymptotic Killing vectors will similarly lead to conserved quantities. For ex-

ample, if ⇣ = @� satisfies (8.23), then we can define the conserved charge

J =

Z

@⌃

d2x
p

�uiTi� . (8.25)

This is in fact the angular momentum, and agrees with all the usual formulae for

computing the angular momentum of a spacetime.

We could also define boost charges, and get the full Poincare group. This requires some

modifications, since in this discussion ⇣i was a vector within the fixed @M , whereas
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boosts act on @M . The results are similar.

8.5 Asymptotic Symmetry Group

We have seen that the bulk Hamiltonian vanishes, but there are boundary terms that

compute conserved charges. Now I will try to explain physically what is going on here.

Local di↵s are fake. Global di↵s are real.

GR is locally di↵ invariant, but it is not invariant under di↵s that reach the boundary.

To see this from the action, just vary it under a general di↵ ⇣. The Lie derivative for

a density is

�⇣(
p

gf) ⌘ L⇣(
p

gf) = rµ(f⇣µ) . (8.26)

Applying this the Lagrangian density of GR we see that it is only di↵-invariant up to

a boundary term, Z

M

�⇣(
p

gL) =

Z

@M

dAµ⇣µL . (8.27)

This is important, so I’ll rephrase: General relativity is invariant under local di↵eo-

morphisms. These are like gauge symmetries: fake symmetries, redundancies, that do

not change the physics and are just a convenient human invention to describe massless

particles. However it is not invariant under di↵eomorphisms that reach the boundary.

The coordinates as r !1 are actually important and meaningful, like the coordinates

in a non-gravitational theory. A time reparameterization with compact support, i.e.,

t! t0(t, x) such that t0 ! t as r !1, is a local di↵ and involves no physics. A global

time shift t! t + 1 acts at infinity and is true time evolution.

The bulk terms in the Hamiltonian, i.e., the constraints, correspond to local di↵s, and

the boundary terms correspond to di↵s that reach the boundary. That is why the bulk

term vanishes on shell and the boundary term does not.

Certain di↵s that reach infinity are actual symmetries. By ‘actual’ symmetries, I

mean symmetries that act on the space of states in the theory: they take one state

to a distinct but related state with similar properties, as opposed to gauge symmetries

which physically do nothing.
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Asymptotic symmetries in U(1) gauge theory

The precise version of all these statements is the formalism of asymptotic symmetries.

The definition of the asymptotic symmetry group is the group of symmetry transfor-

mations modded out by trivial symmetries,

ASG =
symmetries

trivial symmetries
. (8.28)

The definition of a ‘trivial symmetry’ is one whose associated conserved charge vanishes.

Let’s consider electromagnetism as an example. The action I = �1

4

R
d4x(Fµ⌫F µ⌫ +

AµJ
µ
matter) is invariant under an infinite number of transformations,

�Aµ = @µ⇤(x) , �� = i⇤(x)� , (8.29)

where the second term indicates the usual phase rotation on charged matter. These

are gauge symmetries. A local gauge symmetry, ie a transformation for which ⇤(x) has

compact support, does not have any conserved charge associated to it. In fact despite

this infinite number of symmetries we know electromagnetism has only one conserved

quantity, the total charge

Q ⇠
Z

⌃

d3xJ0

matter ⇠
Z

@⌃

d2x Ftr . (8.30)

This is the conserved charge associated to the global U(1) rotation – it exists and is

conserved even in the un-gauged theory. Thus the global rotation is physical, while

local phase rotations are just redundancies.

The definition (8.28) of the asypmtotic symmetry group is the group of all transfor-

mations, mod gauge transformations with zero associated charge. Therefore in electro-

magnetism,

ASG = U(1)global . (8.31)

Asymptotic symmetries in gravity

We will not go into depth on the ASG in gravity right now, but I will just mention

some facts. The ASG in gravity is generated by the conserved charges, which we

argued above are the charges associated to some special vector fields, including those
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for which r
(i⇣j) ! 0 at infinity. In asymptotically flat spacetimes, ie spacetimes

approaching Minkowski space fast enough as r ! 1, these are simply the Killing

vectors of Minkowski space. Thus the asymptotic symmetry group of asymptotically

flat spacetimes is the Poincare group.50

This notion is important, because general spacetimes have no isometries, and there-

fore no local conserved charges. (For example, there is no ‘energy’ conserved along

the geodesic of a probe particle.) Asymptotic symmetries allow us to define global

conserved quantities in this situation.

The Poincare algebra in 4D has 10 generators: 4 translations Pµ and 6 Lorentz gener-

ators Mµ⌫ . The generators obey the Poincare Lie algebra

[Pµ, P⌫ ] = 0 (8.32)
1

i
[Mµ⌫ , P⇢] = ⌘µ⇢P⌫ � ⌘⌫⇢Pµ (8.33)

1

i
[Mµ⌫ , M⇢�] = ⌘µ⇢M⌫� � ⌘µ�M⌫⇢ � ⌘⌫⇢Mµ� + ⌘⌫�Mµ⇢ . (8.34)

If we just label the generators as V A for A = 1 . . . 10, then this is just a Lie algebra

i[V A, V B] = fAB
CV C (8.35)

with some structure constants fAB
C . Each of these generators is associated to a Killing

vector of Minkowski space:

V A $ ⇣(A)µ, A = 1 . . . 10 . (8.36)

For example P µ $ @µ, Mtx $ t@x + x@t, etc. The Killing vectors obey the same

algebra, under the Lie bracket:

[⇣A , ⇣B]µLB ⌘ ⇣A⌫@⌫⇣
Bµ � ⇣B⌫@⌫⇣

Aµ = fAB
C⇣Cµ . (8.37)

(Here A is a label of which vector, and µ is a spacetime index.)

50This is true at spacelike infinity. The story at null infinity is much more subtle since, in non-static
spacetimes, gravitational radiation reaches null infinity and distorts the asymptotics. This leads to
what is called the BMS group, which is an active area of research.
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Recall that conserved charges generate the action of the di↵eomorphism under Dirac

brackets. That is, the charge

QA = H[⇣A] (8.38)

generates

{QA, X}DB = L⇣AX . (8.39)

For this to be consistent with the algebra, the charges themselves must obey the same

algebra:

{QA , QB}DB = fAB
CQC . (8.40)

In other words,

{H[⇣], H[�]}DB = H
⇥
[⇣, �]LB

⇤
+ constant , (8.41)

where we have allowed a constant ‘central charge’ term in the algebra of charges, since

this would still be consistent with the action of the generators on X (and actually does

appear in important examples).

Sometimes the ASG leads to surprises. A famous example is in anti-de Sitter space.

The isometry group of AdSD is SO(D�1, 2). So a natural guess is that the asymptotic

symmetry group of asymptotically-AdS spacetimes is also SO(D � 1, 2). This is true

for D > 3 but wrong in D = 3, as shown by Brown and Henneaux. We will talk about

this more later.

8.6 Example: conserved charges of a rotating body

The linearized solution of GR that carries both energy and angular momentum is

ds2 = �
✓

1� 2M

r

◆
dt2 +

✓
1 +

2M

r

◆
(dr2 + r2d⌦2)� 4j sin2 ✓

r
dtd� . (8.42)

This is, for example, the metric far away from a Kerr black hole, or a rotating planet.

We will compute the energy and angular momentum using the on-shell Hamiltonian

(8.18). Here it is again, after enforcing the constraints:

H[⇣] =

Z

@⌃

d2x
p

�uiTij⇣
j . (8.43)
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The energy is associated to ⇣ = @t and the angular momentum to ⇣ = @�.

Kinematics

We want to compute T ij. This is a tensor living on @M , which is the surface r = r
0

.

To define tensors on @M , we first compute the unit normal to the @M ,

nµdxµ =

r
1 +

2M

r
dr . (8.44)

The full metric can be split into the normal and tangential parts as

gµ⌫ = �µ⌫ + nµn⌫ . (8.45)

�µ
⌫ projects onto the boundary, since nµ�µ

⌫ = 0. The components �µ
i for µ = t, r, ✓, � and

i = t, ✓,� can be used to turn spacetime tensors into boundary tensors, and vice-versa:

Vi ⌘ �µ
i Vµ . (8.46)

The induced metric on @M is

�ijdxidxj = �
✓

1� 2M

r
0

◆
dt2+r2

0

✓
1 +

2M

r
0

◆
(d✓2+sin2 ✓d�2)� 4j

r
0

sin2 ✓d�dt . (8.47)

The timelike unit normal to a constant-t hypersurface is

uµdxµ = (�1 +
M

r
+ O(1/r2))dt . (8.48)

(This could be used to define the induced metric from hµ⌫ = gµ⌫ + uµu⌫ and corre-

sponding projector but we won’t need these to compute the charges.) Projecting the

timelike normal onto the boundary doesn’t change anything, we still have

uidxi = (�1 +
M

r
0

+ O(1/r2

0

))dt , (8.49)

where remember i runs over the boundary directions xi = (t, ✓, �).

Finally, we need the volume element of the boundary at fixed time. The induced metric
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on @⌃ is

�ABdxAdxB = r2

0

(1 +
2M

r
0

)(d✓2 + sin2 ✓d�2) , (8.50)

with volume element p
� = r2

0

✓
1 +

2M

r
0

◆
sin ✓ . (8.51)

Stress tensor

The extrinsic curvature of @M is

Kµ⌫ = �r
(µn⌫)

. (8.52)

As a boundary tensor,

Kij = hµ
i h

⌫
j Kµ⌫ . (8.53)

The trace of K is the same whether we use Kµ⌫ or Kij (check this!). It is

K = � 2

r
0

� 3M

r2

0

+ O(r�3

0

) . (8.54)

Now we compute the stress tensor from its definition (ignoring the background sub-

traction for now), Tij = Kij � �ijK. (I’ve rescaled it by 8⇡ to unclutter notation, but

will put the 8⇡ back in the Hamiltonian below.) It has components

Ttt = � 2

r
0

+
8M

r2

0

, Tt� = �5j sin2 ✓

r2

0

, T✓✓ = r
0

+ M, T�� = sin2 ✓(r
0

+ M) (8.55)

plus higher order terms O(M2/r2

0

). (In this equation we are still ignoring the back-

ground subtraction, we will deal with that below.)

Energy

The energy is the on-shell Hamiltonian for ⇣ = @t. Putting it all together, we have so

far for the energy

Eunsub =
1

8⇡

Z

@M

2r
0

sin ✓ = �r
0

, (8.56)

where ‘unsub’ means we have not dealt with the background subtraction yet.
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To do the background subtraction, we repeat the whole calculation on the flat spacetime

ds2

sub = �
✓

1� 2M

r
0

◆
dt2 +

✓
1 +

2M

r
0

◆
(dr2 + r2d⌦2) . (8.57)

This is a flat spacetime with the same intrinsic geometry on @M .51

Going through all the steps again, the subtraction term is Esub = �r
0

�M . Therefore

the final answer is

E = M , (8.58)

as expected.

Angular momentum

The angular momentum is the on-shell Hamiltonian for ⇣ = �@�.52 There is no back-

ground subtraction necessary. We find

J =
1

8⇡
3j

Z

@⌃

d✓d� sin3 ✓ = j . (8.59)

51We could include the angular momentum term, but we can shift the time coordinate to make
it O(1/r2

0) and it does not contribute. Put di↵erently, we really only need to embed @⌃ into flat
spacetime, not all of @M , so this is only important for the energy and we can ignore the angular
momentum.

52The minus sign here is the standard convention. It is related to the fact that a mode e�i!t+im�

carries energy E = +! and angular momentum J = +m.
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