
7 Thermodynamics of de Sitter space

Inflation is the idea that the very early universe, at t . 10�32s, is approximately de

Sitter spacetime. We will now take a detour to apply our methods to de Sitter space,

since in this situation they produce observable e↵ects via the imprint of primordial

density perturbations on the CMB.

de Sitter is the maximally symmetric solution of the Einstein equations with a positive

cosmological constant. The metric is37

ds2 = �dT 2 + `2 cosh2(T/`)d⌦2

D�1

(global coordinates) . (7.1)

These coordinates, which cover all of de Sitter space, describe a sphere SD�1 that is

very large at T ! �1, contracts to a minimum radius ` at T = 0, then expands as

T ! 1. The length scale is set by the cosmological constant, ⇤ ⇠ 1/`2.

To draw the Penrose diagram, we need to make the range of T finite. This can be done

by defining

tan(⌘/2) = tanh(T/2`) . (7.2)

In these coordinates, which run over ⌘ 2 (�⇡
2

, ⇡
2

), the metric is

ds2 =
`2

cos2 ⌘

��d⌘2 + d⌦2

D�1

�
. (7.3)

For the Penrose diagram (which captures the causal structure but ignores distances)

we can ignore the overall factor, so this gives the diagram in figure 3. Note that de

Sitter space has an initial and final conformal boundary. (Although the diagram also

appears to have left and right boundaries, these are not really boundaries – at each

value of ⌘ space is a sphere, so those lines are just the north and south poles of the

sphere SD�1.)

Vacuum

As usual, there is no unique vacuum. However we can follow our usual prescription,

37I will call these global coordinates, but in the context of cosmology this is usually called the ‘closed
slicing.’
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Figure 3: Penrose diagram of de Sitter space.

as we did for Minkowski and Schwarzschild, and define a vacuum which is prepared by

a path integral on the Euclidean continuation of de Sitter. Euclidean de Sitter space

is just a sphere: send T ! i`✓ in (7.1), and you see that ✓ 2 [�⇡/2, ⇡/2] is the polar

coordinate on a sphere SD of radius `. It is shifted by ⇡/2 from the usual definition,

so the surface T = ✓ = 0 is the equator of the SD. This equator is the minimal-size

spatial section of de Sitter space, an SD�1 of radius `. This is the T = 0 surface at the

middle of the Penrose diagram.

The Euclidean vacuum38 is the state prepared by a path integral on the hemisphere.

This path integral prepares a quantum state on the equator, which can then be evolved

in Lorentzian time. Here is a cartoon for this path integral:

(7.4)

Roughly speaking, ‘most’ states will eventually end up close to the Euclidean vacuum,

since the de Sitter expansion dilutes any excitations.

This vacuum state has in a sense been observed experimentally, since it leaves an

imprint in the CMB. I say ‘in a sense’ because it is not a very fine-grained or direct

test of the details of de Sitter space, but it is nonetheless the only good explanation

38Also called the ‘Bunch-Davies vacuum’ and various other things.
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we have for those fluctuations.

7.1 Vacuum correlators

Now we will calculate the Gaussian fluctuations in de Sitter that are seen in the CMB,

using path integral methods.39 We consider a free massless scalar field, in the ‘conformal

coordinates’ (7.3) in D = 4. (It turns out that scalar fluctuations of the metric reduce

to this problem.) The action is

I ⇠
Z

M

p�grµ�rµ� . (7.5)

We want to compute the wavefunction for this scalar field, in the Euclidean vacuum.

This wavefunction is defined to be the transition amplitude

 [�
0

; t
0

] = h�
0

|e�iHt0 |0i . (7.6)

This is a path integral over field configurations on the mixed spacetime (7.4). The

past boundary condition is regularity on the Euclidean sphere; the future boundary

condition is �(⌦, t
0

) = �
0

(⌦).

In the WKB approximation the wavefunction is simply the on-shell action of a classical

solution satisfying these boundary conditions,

 [�
0

] ⇠ eiI[�] . (7.7)

In fact, since this is a free field, this expression is exact. The on-shell action is a

pure boundary term, since we can integrate by parts in (7.5) then use the equations of

motion. Thus

Ion�shell(t0) ⇠
Z

⌃(t0)

p
h�@n� (7.8)

where ⌃(t
0

) is the spatial slice at time t
0

, @n is the derivative normal to this slice, and

h is the spatial metric.

At late times, the SD�1 spatial sphere in (7.3) is very large. When we look back at the

39This is based on Maldacena astro-ph/0210603.
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CMB, we are looking at a tiny patch of this sphere. Therefore at late times we can

think of the spatial sphere as being essentially flat. That is, we can only see modes with

wavelength much smaller than `. This simplifies the calculation of the wavefunction

because at late times we can approximate the metric by

ds2 =
`2

⌘2
(�d⌘2 + d~x2) . (7.9)

This is enough to compute the wavefunction, since (7.8) is a pure boundary term at

t = t
0

(⌘ = ⌘
0

).

For a plane wave �
0

= hk(⌘)ei
~k~x, the wave equation at late times (i.e., using the metric

(7.9)) is

⇤� = 0 ) @2

⌘hk(⌘)� 2

⌘
@⌘hk(⌘) + ~k2hk(⌘) = 0 . (7.10)

In order to find the wavefunction, we need to find the classical solution satisfying the

boundary conditions stated above. This is

� = �0

k

(1� ik⌘)eik⌘

(1� ik⌘
0

)eik⌘0
. (7.11)

This satisfies all of our criteria: it solves the wave equation, and it is equal to �0

k at

time ⌘ = ⌘
0

. The last criterion was regularity on the Euclidean sphere – this is what

picks the solution going as e+ik⌘, rather than the other solution ⇠ e�ik⌘. To see this,

note the pole of the Euclidean sphere is t = i`⇡/2, which corresponds to

⌘ = 2 tan�1(i⇡/4) = i1 . (7.12)

Only the e+ik⌘ solution is regular in this limit, so we’ve picked the correct solution,

corresponding to the Euclidean vacuum state. (This is very similar to the path-integral

calculation of the groundstate for the harmonic oscillator.) Although � is a real field,

(7.11) is complex. This is fine: even though the path integral is over real field configu-

rations, the stationary phase approximation can pick out a complex saddlepoint. It is

just a trick to compute the path integral.

74



Plugging (7.11) into (7.8),

iI = i

Z
d3k

(2⇡)3
`2

2⌘2
0

�0

�k@⌘�
0

k|⌘=⌘0 ⇠
Z

d3k

(2⇡)3
`2

2


i
k2

⌘
0

� k3 + · · ·
�
�0

�k�
0

k (7.13)

This gives the wavefunction (exactly in a free theory) via (7.7). Knowing the wavefunc-

tion, we can calculate correlators using h�2i ⇠ R
D��2| (�)|2. In detail, accounting

for the normalization of the wavefunction:

h�k��ki =

R
D��k��k exp

⇣
� R

d3p
(2⇡)3

`2p3�p��p

⌘

R
D� exp

⇣
� R

d3p
(2⇡)3

`2p3�p��p

⌘

= (2⇡)3
1

2`2
k�3 , (7.14)

where we used the Gaussian integral
R
dzz2e�az2/

R
dze�az2 = 1

2a
(and we’ve dropped

an overall momentum-conserving delta function).

The power law in (7.14) is what is meant by the statement that ‘inflation predicts a

scale-invariant spectrum of primordial scalar perturbations.’

7.2 The Static Patch

A single inertial observer travels on a geodesic which we might as well call the north

pole of SD�1. Thus the worldline of an observer is the solid line on the right side of the

Penrose diagram. It is clear from the diagram that this observer is in causal contact

with only a subregion of de Sitter. This is because the universe is expanding very

rapidly, so you cannot communicate with someone beyond a certain critical distance:

the cosmological horizon. This is labeled ‘horizon’ in figure 3. Like Rindler space, the

position of the horizon depends on the observer.

The static patch is the region of de Sitter in causal contact with an observer sitting

at the north pole. This is the analogue of the Rindler patch. The coordinates on the

static patch are

ds2 = �(1� r2/`2)dt2 +
dr2

1� r2/`2
dr2 + r2d⌦2

D�2

. (7.15)
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This looks like a black hole except, the static patch where an observer lives is the

inside, r < `, with a cosmological horizon at r = `.

Temperature

In the Euclidean vacuum, an observer in the static patch will see a temperature.40 This

is the same reason we discussed above for Rindler space and then for the Schwarzschild

spacetime in the Hartle-Hawking state. The Euclidean path integral prepares a state

entangled between the left and right static patches, and when we trace over the hidden

region, the resulting density matrix is thermal. To find the temperature we can apply

the imaginary time periodicity trick. Starting from the static patch coordinates, define

r = `(1� ✏2) and expand in ✏ to find:

ds2 ⇡ 2`2(d✏2 � ✏2

`2
dt2) + · · · (7.16)

This looks like Rindler, so the Euclidean continuation is regular only if t ⇠ t + 2⇡i`.

Therefore the de Sitter temperature is

TdS =
1

2⇡`
. (7.17)

This is the temperature that you will read on your thermometer if you are an inertial

observer in de Sitter. (Due to dark energy we are now at the start of a new de Sitter

epoch. The present-day de Sitter temperature is the Hubble scale, T ⇠ 10�33eV .)

Entropy

The area of the cosmological horizon is

Area = `2V ol(SD�2

) (7.18)

So in D = 4, S =area/4 gives

SD=4

= ⇡`2 . (7.19)

40See Gibbons and Hawking, “Cosmological event horizons, thermodynamics, and particle creation,”
1977.
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7.3 Action

The Euclidean action of dSD is the action of SD. This is finite and there are no

boundary terms to worry about on a sphere, so it’s straightforward to calculate. In

D = 4, the Euclidean action is41

IE = � 1

16⇡

Z

SD

p
g(R� 2⇤) = � `4

16⇡

✓
12

`2
� 6

`2

◆
V ol(S

4

) = �⇡`2 . (7.20)

Curiously, this is minus the entropy, i.e., the entropy is

S = logZ . (7.21)

Here’s why: Recall the thermodynamic identity logZ = ��F = ��E+S. The energy

in GR is a pure boundary term (see next lecture!), so a compact space has E = 0. Thus

thermodynamics predicts logZ = S, and that’s exactly what we found in de Sitter.42

de Sitter is mysterious

We will not say much more about de Sitter space in this course. A big reason for this

is that we don’t have any UV-complete theory of gravity in de Sitter, like we do in

anti-de Sitter. We also have no clear answer to the question ‘What is the de Sitter

entropy?’ (Does it count the microstates of something?) Since we live in de Sitter, this

seems like a very important question.

Exercise: de Sitter in general dimensions

Di�culty level: straightforward, if using Mathematica to compute curvatures

41Given the proliferation of things called ‘S’ I will start using I for action
42 Caveat: In this calculation T = 1/(2⇡`), with ` a fixed parameter, so the temperature is not

actually a tunable variable. We can’t really make sense of thermodynamics if the temperature is not
a free variable. To really make sense of the discussion in this section, we need to add some additional
matter to de Sitter, which allows us to tune the temperature. Then there is a true 1st law, with the
temperature a tunable variable. This done in for example the nice de Sitter review hep-th/0110007.
You can think of what we’ve described here as the limit of that calculation where the extra energy is
set to zero.
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Compute the entropy and the on-shell action of D-dimensional de Sitter space, and

verify the relation S = logZ.
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