
6 The Gravitational Path Integral

6.1 Interpretation of the classical action

In ordinary QFT, to do a path integral we first fix the spacetime manifold M , then

integrate over fields defined on M . We did the same thing in our discussion of Hawking

radiation. In quantum gravity, however, we must integrate over the geometry itself.

We are only allowed to specify the boundary conditions on the geometry as r ! 1,

just like for other fields. The gravitational path integral (in Euclidean signature) is

Z =

Z
DgD� e�S

E

[g,�], SE[g] = � 1

16⇡GN

Z p
g (R + · · · ) + boundary terms ,

(6.1)

where � denotes all the matter fields.

The meaning of this path integral depends on the boundary conditions, as usual. In

analogy to the QFT case, we define the thermal partition function Z(�) as the path

integral on a Euclidean manifold with the boundary condition that Euclidean time is

a circle of proper size �,

tE ⇠ tE + � , gtt ! 1, at infinity . (6.2)

Of course we cannot actually do the path integral. In fact, we don’t even really know

how to define it.30 The best we can do is to approximate it by expanding around a

classical saddlepoint, i.e., a solution of the classical equations of motion:

Z(�) ⇡ exp
��SE[ḡ, �̄] + S(1) + · · · � . (6.3)

The leading term, in which ḡ, �̄ is a solution of the classical equations of motion, is the

semiclassical approximation to the path integral. This solution must of course obey

the correct boundary condition. The next term is the 1-loop term and is O(G0

N), and

the dots indicate higher-loop contributions.

We already know a solution with the correct boundary conditions: the Euclidean

30The situation in gravity is even worse than in ordinary QFTs, since the Euclidean action is not
bounded below.
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Schwarzschild black hole. This is a classical saddlepoint with a Euclidean time cir-

cle of size �. Therefore, to leading approximation, the thermal free energy is the

Euclidean on-shell action:

logZ(�) ⇡ �SE[ḡ] , (6.4)

with ḡ the Schwarzschild metric. (We have dropped �̄ because no matter fields are

non-zero in the Schwarzschild background.)

This partition function can be used in all of the same ways as an ordinary thermody-

namic partition function. For example, recall that logZ = S��E, so the entropy and

energy are

S = (1� �@�) logZ(�), E = �@� logZ . (6.5)

We will see that these agree with the area law and the black hole mass.

A similar discussion applies with an angular potential and electric potential, but we

will stick to the Schwarzschild black hole to keep things simple.

Exercise: RN free energy

Di�culty: 2 lines

Using our previously calculated results for S and T (from the 1st law), and assuming

energy E = M , find the free energy of the Reissner-Nordstrom black hole.

Exercise: RN specific heat

Di�culty: 2 lines

Compute the specific heat of Reissner-Nordstrom.

6.2 Evaluating the Euclidean action

We will now do this explicitly, in Einstein gravity (i.e., no higher curvature corrections)

with zero cosmological constant. It is not as simple as computing R (which vanishes
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for Schwarzschild!) and integrating over spacetime, since there are boundary terms

to worry about and infinities to regulate.31 Although this is entirely classical, the

procedure to regulate divergences involves counterterms much like those in QFT; in

fact we will see later there is a direct link between these two apparently di↵erent

divergences.

Gibbons-Hawking-York boundary term

The Euclidean action is computed by first cutting o↵ the spacetime at some large but

fixed r = r
0

. In the presence of a boundary we must add to the bulk Einstein action a

boundary term, called the Gibbons-Hawking-York term (once again setting GN = 1),

SE[g] = � 1

16⇡

Z

M

p
gR� 1

8⇡

Z

@M

p
hK . (6.6)

Here hij is the induced metric on the boundary @M , and the extrinsic curvature of

@M is

Kij ⌘ 1

2

Lnhij = r
(inj) , K = hijKij , (6.7)

with n is the inward-pointing unit normal to @M .32

The Gibbons-Hawking-York term is needed for the action to be stationary around

classical solutions. The variation of the Einstein term has the schematic form

�

Z

M

p
gR ⇠

Z

M

(eom)�g +

Z

@M

[A(g, @g)�g +B(g, @g)@�g] , (6.9)

where ‘eom’ essentially means the Einstein tensor33 and the boundary terms come

from integrating by parts. On a classical solution, the bulk term vanishes. If we

impose boundary conditions that fix the metric at r = r
0

, then �g|@M = 0, so the

first boundary term vanishes, but the boundary term involving @�g does not. The

Gibbons-Hawking-York term fixes this problem. It is chosen so that the variation of

31This subsection follows Hawking’s chapter in General Relativity, an Einstein Centenary Survey,
Hawking and Ellis eds.

32 In the simple case that the boundary is, say, at fixed r, the induced metric hij = gij where i runs
over the transverse directions. That is all we will need. But more generally, the projector onto @M is

hµ⌫ = gµ⌫ � nµn⌫ (6.8)

(as you can see by noting nµhµ⌫ = 0), and then you must define intrinsic coordinate xi on @M .
33 (eom)�g / p

gGµ⌫�gµ⌫
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the full action (6.6) has the form

�SE[g] =

Z

M

(eom)�g + 1

2

Z

@M

p
hT µ⌫�gµ⌫ . (6.10)

We will return to this ‘stress tensor’ later, but for now the important thing is just that

the boundary term has been chosen to eliminate @�g. Thus �SE[ḡ] = 0 for variations

satisfying the boundary condition and ḡ satisfying the equations of motion.

Euclidean Schwarzschild Black Hole

The Euclidean Schwarzschild solution is obtained from the ordinary Schwarzschild

metric by sending t ! �i⌧ ,

ds2 =

✓
1� 2M

r

◆
d⌧ 2 +

dr2

1� 2M
r

+ r2d⌦2

2

. (6.11)

What was the horizon r = 2M in Lorentzian signature is now just the origin of a polar

coordinate system, with angular coordinate ⌧ identified as required for regularity at

the origin,

⌧ ⇠ ⌧ + 8⇡M . (6.12)

Euclidean black holes are completely smooth solutions; they do not have an interior or

a singularity.

Now we want to evaluate the action. The bulk term vanishes, since the vacuum Einstein

equations set R = 0. The boundary term, evaluated on the surface r = r
0

, is

Z

@M

p
hK = �(8⇡r

0

� 12⇡M) . (6.13)

This is infinite as we take r
0

! 1. The procedure to regulate this divergence34 is to

add a ‘counterterm’ to the action,

SE[g] = � 1

16⇡

Z

M

p
gR� 1

8⇡

Z

@M

p
hK +

1

8⇡

Z

@M

p
hK

0

, (6.14)

34Caveat: this version of the procedure does not always work in asymptotically flat spacetime. As
far as I know there is no entirely satisfactory and unique prescription with zero cosmological constant.
Things are understood better in de Sitter space, which has finite volume, or in asymptotically anti-de
Sitter space, where a similar procedure always works and plays an important role in AdS/CFT.
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where K
0

is the extrinsic curvature of the same boundary manifold @M , embedded in

flat spacetime. This is very similar to what we do in quantum field theory, but this

calculation is entirely classical. (We will see later that in anti-de Sitter space, there is

a direct connection between the two ideas). Note that the counterterm depends only

on data intrinsic to the boundary surface – it is not allowed to depend on @nh.

To compute the counterterm, we embed the boundary metric

ds2bdry = (1� 2M/r
0

)d⌧ 2 + r2
0

d⌦2

2

(6.15)

in flat space, by repeating the calculation for the flat geometry

ds2subtraction = (1� 2M/r
0

)d⌧ 2 + dr2 + r2d⌦2

2

. (6.16)

This gives35 Z

@M

p
hK

0

= �(8⇡r
0

� 8⇡M +O(1/r
0

)) . (6.17)

This eliminates the divergence (and changes the finite term!), giving our final answer

SE =
�M

2
= 4⇡M2 (6.18)

Thus the thermal partition function, or leading approximation to the path integral, is

Z(�) = exp
��4⇡M2

�
= exp

✓
� �2

16⇡

◆
. (6.19)

From this we can rederive the entropy and energy using standard thermodynamics,

S = (1� �@�) logZ = 4⇡M2 (6.20)

E = �@� logZ = M

The entropy agrees with the area law S = Area/4.

35In this case you can get the same answer by just evaluating K with M = 0. However this does
not always work. The correct procedure is to subtract the curvature of a boundary surface of identical
intrinsic geometry, embedded in flat spacetime.
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Entropy and conical defects

We have just checked this for a special case, the Schwarzschild black hole, but this

always works and agrees with the area law. Roughly, the reason it is proportional to

area is that we can think of the equation (1 � �@�) logZ as calculating the change

in the classical action produced by changing the imaginary-time identification. If you

smoothly deform a solution, then �SE = 0 by the equations of motion; but if you

introduce a defect, this contributes �SE =
R
defect

(something). Going through the

details, you can derive Area/4.36 This is also the easiest way to derive Wald’s formula,

which includes the corrections to the entropy from higher curvature terms in the action.

Exercise: Schwarzschild action

Di�culty: a page or two

Derive equations (6.13) and (6.18) using (6.7).

Exercise: Euclidean methods for the BTZ black hole

Di�culty: di�cult, I suspect

Evaluate the on-shell action of the Euclidean BTZ black hole obtained by Wick-rotating

the metric (2.23). Check that you reproduce the correct entropy and energy. (Caveat!

What I called M in the metric is not the energy. The energy is E = M2/8.)

This calculation is similar to what we just did for asymptotically-flat Schwarzschild

black holes. Note that the bulk term no longer vanishes, R� 2⇤ 6= 0. The full action,

including the counterterm, is

SE[g] = � 1

16⇡

Z

M

p
g(R� 2⇤)� 1

8⇡

Z

@M

p
hK +

a

8⇡

Z

@M

p
h . (6.21)

Choose a to cancel the divergence; the remaining finite expression is the correct SE.

Reference: [Balasubramanian and Kraus, hep-th/9902121].

Comment: The counterterm depends on the dimensionality of spacetime. The simple

counterterm in (6.21) only works in AdS
3

. In higher-dimensional AdS, there are more

36The clearest reference I know for this is section 3.1 of Lewkowycz and Maldacena, 1304.4926.]
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available counterterms, for example
R
@M

R[h] (the intrinsic boundary curvature), and

these are also required to cancel all divergences.
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