
4 Path integrals, states, and operators in QFT

To put our derivation of Hawking radiation on a solid footing, and for other applications

to gravity later on, we will now take a slight detour to explain the relationship between

path integrals and states in quantum field theory. (This is material not normally

covered in detail in QFT courses or books; it is assumed that the reader is already

familiar with path integrals at the level of Peskin and Schröder.)

4.1 Transition amplitudes

Path integrals define transition amplitudes. A Euclidean path integral defines a tran-

sition amplitude under evolution by e��H :

h�2|e��H |�1i =
Z �(⌧=�)=�2

�(⌧=0)=�1

D� e�SE [�] . (4.1)

This involves a split into space and (Euclidean) time; �1,2 is a boundary condition that

specifies data at a fixed time. Exactly what this path integral means depends on the

topology of space. If space is a plane (or line in 2d), then we depict this by

h�2|e��H |�1i = (4.2)

meaning it’s a Euclidean path integral over an infinite strip Rd�1⇥interval, with the

boundary conditions shown and the interval has length �.
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If space is a sphere (or circle in 2d), then the appropriate path integral is

h�2|e��H |�1i = (4.3)

ie it is a path integral over a cylinder Sd�1⇥interval, of length �.

4.2 Wavefunctions

The transition amplitude defines the wavefunction, in the Schroedinger picture. For

example the wavefunction for the state

| i = |�1(⌧)i = e�⌧H |�1i (4.4)

is the overlap

 [�2] ⌘ h�2| i . (4.5)

4.3 Cutting the path integral

A ‘cut’ is a spatial slice of the Euclidean manifold. It is a codimension-1 surface ⌃.

To define the transition amplitude, we specified data on two cuts, at ⌧ = 0 and ⌧ = �.

We can formally think of a path integral with one set of boundary conditions and one

open cut as a quantum state. That is, the state

| i = e��H |�1i (4.6)
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is the path integral

| i =
Z �(⌧=�)=??

�(⌧=0)=�1

D� eS[�] = (4.7)

This is a formal object where the data on the top cut is left unspecified. It is a

functional | i that turns field data h�2| into complex numbers h�2| i.

More generally, any path integral with an open cut ⌃ defines a quantum state on ⌃.

For example, this Euclidean path integral in a 2D QFT defines some particular state

on a circle, ⌃ = S1:

|Xi = (4.8)

The wavefunction of this state is computed by the path integral

X[�2] = h�2|Xi = (4.9)
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We could also insert some operators into this path integral to get a di↵erent state:

|X 0i = (4.10)

This means a Euclidedan path integral weighted by O1(x1)O2(x2)e�SE [�], instead of

just the usual e�SE [�].

4.4 Euclidean vs. Lorentzian

So far we have discussed Euclidean path integrals. But states are states: they are

defined on a spatial surface and do not care about Lorentzian vs Euclidean. The state

|Xi, defined above by a Euclidean path integral, is a state in the Hilbert space of the

Lorentzian theory. It is defined at a particular Lorentzian time, call it t = 0. It can be

evolved forward in Lorentzian time by acting with e�iHt, or equivalently by performing

the Lorentzian path integral:

|X(t)i = e�iHt|Xi = (4.11)
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Since |Xi ⌘ |X(0)i was defined by a Euclidean path integral, the state |X(t)i is a path

integral that is part Euclidean, part Lorentzian:

|X(t)i = (4.12)

Again, this equation should be read as a formal definition of the state that tells you

what path integral to perform to compute transition amplitudes:

h�2|X(t)i = (4.13)

4.5 The ground state

Evolution in Euclidean time damps excitations. Suppose we start in some state |Y i
and expand in energy eigenstates:

|Y i =
X

n

yn|ni, H|ni = En|ni . (4.14)

Then by evolving over a long Euclidean time we can project onto the lowest energy

state,

e�⌧H |Y i ⇡ e�⌧E0y0|0i . (⌧ ! 1) (4.15)

It follows that we can define the (unnormalized) ground state by doing a path integral

that extends all the way to infinity in one direction. For example the ground state on
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the line is produced by the Euclidean path integral

|0iline = (4.16)

This means a path integral on the semi-infinite plane, with an open cut at the edge. The

ground state on a circle is produced by the path integral on a semi-infinite Euclidean

cylinder,

|0icircle = (4.17)

These states are unnormalized.

4.6 Vacuum correlation functions

Path integrals with cuts can be glued together to make transition amplitudes. For

example, for a theory on a line, the vacuum-to-vacuum amplitude is

h0|0i =
Z

D�e�SE [�] = (4.18)

The lower half-plane produces |0i, the upper half-plane produces h0|, and glueing them

together along the cuts at ⌧ = 0 produces the transition amplitude. One way to see

that we should glue is to insert the identity:

h0|0i =
X

�1

h0|�1ih�1|0i . (4.19)
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The first term is a path integral on the upper half plane; the second term is a path

integral on the lower half plane; and summing over all possible boundary conditions

�1 in the middle just says that fields should be continuous across ⌧ = 0 and therefore

glues the half-planes together.

Expectation values of local operators are computed by similar path integrals, but with

extra operator insertions. For example, correlation functions are expectation values in

the vacuum state. In Euclidean signature these are computed by the path integral

hO1(x1)O2(x2)i ⌘ h0|O2(x2)O1(x1)|0i (4.20)

= (4.21)

This picture means the path integral of O1(x1)O2(x2)e�SE [�] over fields on Rd. (The

ordering of operators does not matter on the lhs of (4.20), but is important on the rhs;

more in this below.)

Time-ordered Lorentzian vacuum correlation functions are computed by a more com-

plicated, ‘folded’ path integral that is part Euclidean and part Lorentzian. For example

(assuming t1 > t2),

hO1(t1, ~x1)O2(t2, ~x2) · · · i = h0| �eiHt1O1(0, ~x1)e
�iHt1

� �
eiHt2O2(0, ~x2)e

�iHt2
� |0i (4.22)
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is computed by the following path integral:

(4.23)

This path integral starts at t = �i1 on the left; evolves to t = 0 to prepare the

vacuum state; evolves in Lorentzian time to t = t2, where O2 is inserted; then evolves

to t1 where O1 is inserted; then evolves backwards in Lorentzian time to t = 0; then

evolves to t = +i1 for the vacuum ‘bra’. Again, this picture means you should do the

path integral Z
D� O1(t1, ~x1)O2(t2, ~x2)e

iS[�] (4.24)

where we integrate over all fields � defined on the mixed-signature manifold in the

picture. The Lorentzian action appears in this expression; when you integrate over the

Euclidean part of the manifold, the fact that t is imaginary will automatically change

this into e�SE [�].

We rarely need to think about doing folded path integrals like (4.23). Instead, we

do one of two equivalent things: (1) We compute the Euclidean path integral with

arbitrary values of the insertion points, then analytically continue to Lorentzian time,
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or (2) We use an i✏ prescription to compute the Lorentzian path integral. Actually the

usual i✏ prescription is just a deformation of the integration contour (that is, integration

contour in field space) shown in figure (4.23), and computes exactly the same quantity.

So if you’re ever wondered what you were doing with that i✏, the answer is the figure

in (4.23)!

Aside: Some comments on time ordering

In a sense, time ordering does not really exist in Euclidean signature: fields commute,

h· · ·O1(x1)O2(x2) · · · i = h· · ·O2(x2)O1(x1) · · · i . (4.25)

One way to see this is to note that correlators computed by the path integral

Z
D� O1(x1)O2(x2) · · · e�SE (4.26)

are just statistical averages, so they commute just like observables in stat-mech. Put

di↵erently, the reason that fields don’t commute in Lorentzian signature is because

the correlator is not an analytic function of the coordinates. It has branch cuts when

O2 hits the light-cone of O1, and requires an i✏ prescription to define the function.

Di↵erent choices of i✏ prescription give di↵erent types of correlation functions, and we

denote these di↵erent choices by writing the fields in a di↵erent order. In Euclidean

signature, correlators are analytic, there are not branch cuts, and there are no i✏’s, so

we don’t have to worry about how fields are ordered.

However, when we cut the path integral to translate to operator language, the field

operators don’t commute, even in Euclidean signature. They are ‘time’-ordered ac-

cording to whatever slicing we choose for the path integral. So if states are defined

on constant-Euclidean-time slices, the path integral translates into an operator expres-

sion with fields ordered according to their Euclidean time. If states are defined on

constant-r slices (as we often do in conformal field theory), then the corresponding

operator expression has radially-ordered fields.
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4.7 Density matrices

A density matrix is an operator; it takes a bra and a ket, and produces a complex

number. Thus any path integral with two open cuts defines a density matrix (un-

normalized). For example, the density matrix ⇢ = e��H , for a theory on a circle, is

formally the doubly-cut Euclidean path integral

⇢ ⌘ e��H = . (4.27)

This is just a picture representing the statement that matrix elements h�2|⇢|�1i are

computed by the path integral with boundary conditions �1,2 on the cuts.

4.8 Thermal partition function

The density matrix ⇢ = e��H is the density matrix in a thermal ensemble at tempera-

ture T = 1/�. The thermal partition function is

Z(�) = tr e��H . (4.28)

This can be represented by a Euclidean path integral as follows:

Z(�) = tr e��H (4.29)

=
X

�1

h�1|e��H |�1i (4.30)

=
X

�1

(4.31)
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In the last line, by summing over �1 we are really just imposing periodic boundary

conditions on the cylinder. This glues together the two ends of the cylinder, producing

a torus. So the thermal partition function for a 2D theory on a circle is equal to a path

integral on a torus:

on circle: Z(�) = (4.32)

Similarly, the thermal partition function for a 2D theory on a line is computed by a

path integral on an infinitely long cylinder of period �:

on line: Z(�) = (4.33)

The trace ‘glues together’ parts of the Euclidean manifold that computes ⇢.

The same thing works in higher-dimensional QFT at finite temperature: If space is a

plane Rd�1, the thermal partition function is the path integral on Rd�1 ⇥ S1, and for

a theory on Sd�1, the thermal partition function is a path integral on Sd�1 ⇥ S1.

4.9 Thermal correlators

Equal-time correlators at finite temperature are defined (up to normalization) by

hO1(t = 0, ~x1)O2(t = 0, ~x2) · · · i� ⌘ Tr e��HO1(0, ~x1)O2(0, ~x2) · · · (4.34)

By the same logic, this is computed by a path integral on a cylinder Rd�1⇥S1 (if space

is a plane) or on Sd�1 ⇥ S1 (if space is a sphere).
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To compute di↵erent-time Lorentzian correlators at finite temperature, the easist method

is usually to compute the Euclidean correlators first, as functions of arbitrary insertion

points on the Euclidean cylinder, then analyatically continue.

Finite-temperature correlators in 2d CFT

Di�culty level: moderate, a couple pages

In a 2d conformal field theory, the 2pt function on the Euclidean cylinder of size � is

fixed entirely by conformal invariance. Let w = x + itE be a complex coordinate on

the Euclidean cylinder (tE is Euclidean time and x is space). Then the 2pt function

on the cylinder is

hO(w1, w̄1)O(w2, w̄2)i� =

✓
1

sinh(2⇡(w1 � w2)/�) sinh(2⇡(w̄1 � w̄2)/�)

◆�

(4.35)

where � is called the scaling dimension of the operator O.

(a) Draw a picture of the path integral on the cylinder that computes (4.35).

(b) Translate your picture into operator language. Compare to (3.10). (Don’t worry

about the overall sign, this is a convention.)

(c) Check that the 2pt function written in (4.35) indeed has the periodicity of a thermal

correlator (see discussion around (3.10)).

(d) Analytically continue to find the finite-temperature 2pt function at real (Lorentzian)

times hO(t1, x1)O(t2, x2)i, where t is Lorentzian time. Don’t worry about which Lorentzian

ordering you are computing, just pick one. (The most obvious continuation will com-

pute the time-ordered Lorentzian correlator.)

(e) Fix t1 = x1 = 0. Draw a picture of the complex-t2 plane showing the singularities

of (4.35). When you analytically continued in part (d), you implicitly chose a contour

in this plane to define the analytic continuation. Check that if (t2, x2) lies inside the

future light-cone of (t1, x1), then the analytic continuation is ambiguous, due to one of

the poles in the complex-t2 plane. This ambiguity is why timelike separated fields in

Lorentzian signature do not commute.
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