
24 The stress tensor in 3d gravity

Now we will compare the stress tensor of 3d gravity to our results of the previous

section. Consider the asymptotically-AdS
3

metric

ds2 =
`2

r2

dr2 +
r2

`2

dzdz̄ + hzzdz2 + hz̄z̄dz̄2 + 2hzz̄dzdz̄ . (24.1)

We have not written every possible term in the perturbation hµ⌫ , but it turns out that

other terms can be removed by a di↵. Also, we will keep only the leading term in hµ⌫

at large r, i.e., near the boundary, so we can assume that hµ⌫ is independent of r.

The Einstein equations imply that the perturbation is traceless and conserved:

hzz̄ = 0 (24.2)

@hz̄z̄ = @̄hzz = 0 . (24.3)

24.1 Brown-York tensor

The stress tensor of this geometry was computed in an exercise from one of the early

lectures. Let’s briefly review how this works. The Brown-York stress tensor is⇤

Tij ⌘ � 4⇡p
g

�Son�shell
Einstein

�gij
(24.4)

= �1

4

✓
Kij �Kgij � 1

`
gij

◆
. (24.5)

The first two terms came from varying the Einstein action plus the Gibbons-Hawking

boundary term. The last term comes from the counterterm, with the coe�cient set

in order to make the answer finite as r ! 1. Plugging the metric (24.1) into (24.5),

using (24.2) and doing a lot of work, eventually

Tzz = � 1

4`
hzz , Tz̄z̄ = � 1

4`
hz̄z̄ . (24.6)

⇤We’ve changed conventions by a factor of 2⇡ compared to some earlier lectures. This is just a
choice, made to agree with our convention for the CFT stress tensor.
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Thus the Brown-York metric is traceless, conserved, and therefore holomorphic/anti-

holomorphic just like in CFT.

24.2 Conformal transformations and the Brown-Henneaux cen-

tral charge

Under di↵eos, the metric (24.1) transforms as

�gµ⌫ = L⇣gµ⌫ . (24.7)

What vector fields ⇣ preserve the form of the metric (24.1)? The answer is

z ! z + ✏(z)� `4

2r2

✏̄00(z̄) (24.8)

z̄ ! z̄ + ✏̄(z̄)� `4

2r2

✏00(z)

r ! r � r

2
✏0(z)� r

2
✏̄0(z̄)

for arbitrary functions ✏(z) and ✏̄(z̄). Near the boundary, these act on z, z̄ just like

conformal transformations. The extra @r piece acts as a rescaling.

Thus transformations of AdS
3

that preserve the asymptotics of the metric coincide

with 2d conformal transformations!

Let’s set ✏̄ = 0 and focus on the holomorphic conformal transformations. Under (24.8),

the metric transforms as

ds2 ! ds2 +

✓
�2hzz✏

0 � ✏h0
zz +

`2

2
✏000

◆
dz2 (24.9)

Thus the dz2 piece of the metric, which we interpreted as the gravitational stress tensor

up to a factor of �1/4`, transforms as

�✏T = �✏@T � 2T@✏� `

8
✏000 . (24.10)

This is exactly the transformation law in 2d CFT derived in (23.53). Comparing the
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coe�cient of the anomalous term, we see

c =
3`

2GN
(24.11)

where we’ve reinserted a factor of GN (previously set to 1) by dimensional analysis.

This is called the Brown-Henneaux central charge, after Brown and Henneaux who com-

puted it way back in 1987 – long before AdS/CFT, and even well before the discovery

of the BTZ black hole or the Brown-York stress tensor. They used a di↵erent method,

based on conserved charges, which directly produces the Virasoro algebra (23.56) as

the asymptotic symmetry group. As far as I know, they did not recognize the relation

to the 2d conformal group.

24.3 Casimir energy on the circle

Recall the metric of the 3d black hole (BTZ):

ds2 = �(
r2

`2

� 8M)dt2 +
dr2

r2/`2 � 8M
+ r2d�2 (24.12)

It is up to us whether to identity � ⇠ � + 2⇡ (since there is no conical defect even if

we leave � 2 [�1,1]). The BTZ black hole is the solution with � ⇠ � + 2⇡. The

boundary of this spacetime is the Lorentzian (t, �) cylinder, so this is dual to the CFT

on a cylinder.

In an exercise in a previous lecture you computed the energy of this solution, and found

E = M .

Global AdS can also be written in the form (24.12), by choosing M = � `
8

. Therefore

the gravitational energy of the groundstate on the cylinder is

Evac = � `

8
= � c

12
, (24.13)

where c take the Brown-Henneaux value (24.11).

This is equal to the Casimir energy of a 2d CFT (23.63). It was actually guaranteed

to agree once we found the transformation law (24.10) agrees with CFT, because the
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finite version of this infinitessimal transformation must be the Schwarzian derivative,

on the gravity side just as it was in CFT.
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