
20 Entanglement Entropy and the Renormalization

Group

Entanglement entropy is very di�cult to actually calculate in QFT. There are only a

few cases where it can be done. So what is it good for? One answer is the relation

to quantum gravity, which we’ll get to later. Another answer is that entanglement

entropy has led to deep insights into the structure of QFT. It is a tool that is almost

orthogonal to the usual tools of QFT, and can be used to prove general facts about

QFT that, so far, cannot be proved using any other method. The most important

example is on the irreversibility of the renormalization group in d = 3. We’ll now take

a brief detour to describe this result and the relevance of entanglement, as pioneered

by Casini and Huerta. We restrict to Lorentz-invariant QFTs.

20.1 The space of QFTs

The renormalization group connects conformal field theories:⇤

(20.1)

Starting with CFT 1 in the UV, we deform by a relevant operator and flow down to

CFT 2 or, depending on the deformation, perhaps CFT 3 in the IR. These CFTs might

be free, or trivial, as in QCD, which is an RG flow between a free theory in the UV

and a gapped (empty) theory in the IR. The IR fixed points may also have relevant

perturbations, so we can continue the process and flow to new theories. Two natural

questions are:

⇤Strictly speaking, it connects scale-invariant theories. It is widely suspected that scale invariant
QFTs are necessarily conformal, but this is proven only in 2d and in 4d under certain assumptions.
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1. Which CFTs can flow to which other CFTs? For example, can the green flow in

the figure exist, connecting CFT 3 to CFT 4? Or should it flow from CFT 4 to

CFT 3 instead?

2. Can there by closed cycles, connecting the IR back up to the UV like the red

dotted flow in the figure?

The RG involves integrating out degrees of freedom, so it would be very strange to find

closed cycles! We expect that each time we do into the IR, we reduced the number of

degrees of freedom. To make this intuition precise has been a longstanding problem in

quantum field theory.

20.2 How to measure degrees of freedom

To make this precise we need to define ‘number of degrees of freedom.’

Free energy is no good

One ‘obvious’ guess fails. Let’s try to measure degrees of freedom by computing the

thermodynamic free energy, logZ. This can be computed by the Euclidean path inte-

gral on Rd�1 ⇥ S1

�. At a fixed point, dimensional analysis fixes

F (�) = �cthermVd�1

T d (20.2)

where ctherm is a dimensionless number that we might guess counts degrees of freedom.

However, ctherm does not necessarily decrease along RG flows. An example is the flow

from the interacting critical point of N bosons in d = 3, to the Goldstone phase with

N � 1 free bosons.

So we need a more sophisticated measure of degrees of freedom. The correct measure

depends on dimension, as do known results about the irreversibility of the RG.

d=2: c-theorem

This case is the easiest and has been understood since the 80s, when Zamolodchikov

179



proved that the correct quantity to consider is the central charge c. Zamolodchikov’s

c-theorem states

cUV � cIR (20.3)

in a unitary, Lorentz-invariant RG flow.

c plays many roles in a 2d CFT: It appears in the Virasoro algebra, in the trace

anomaly, in the stress-tensor correlation functions, in the Casimir energy on a circle,

in the thermodynamic free energy, and in the groundstate entanglement entropy. In

higher dimensions, these di↵erent quantities can have di↵erent constants associated to

them, so it is not obvious how to generalize (20.3) to higher dimensions. The picture

that has emerged in the last few years (conjectured in even dimensions long ago by

Cardy) is that the correct quantity to consider is the partition function on Sd. Exactly

how this works depends on the dimension.

d=3: F -theorem

The correct measure of degrees of freedom in 3d is

F = � log |ZS3 | . (20.4)

It can be shown that this is equal to the finite term in the entanglement entropy of

a spherical region. That is, let A be a ball of radius LA. In the vacuum state the

quantity appearing in (19.5) obeys

S̃ = F . (20.5)

This quantity obeys the ‘F -theorem’,

FUV � FIR . (20.6)

This was proved by Casini and Huerta using entanglement methods, described below.

d=4: a-theorem

In even dimensions, the partition function on Sd has a log divergence due from the

180



conformal anomaly. The coe�cient of this log divergence is called a:

logZS4 ⇠ a log
R

✏UV
. (20.7)

The same number appears in the entanglement entropy of a spherical region. In the

notation of (19.6),

S̃ / a . (20.8)

This obeys the ‘a-theorem’,

aUV � aIR . (20.9)

20.3 Entanglement proof of the c-theorem

Zamolodchikov derived the c-theorem in d = 2 using standard QFT methods, without

reference to entanglement entropy. Later, it was derived using entanglement entropy by

Casini and Huerta. Their derivation is very elegant, and exemplifies how entanglement

inequalities can be applied in QFT. Unlike Zamolodchikov’s proof, it also generalizes

to d = 3.

We consider any Lorentz-invariant QFT in 2d. Consider two boosted, overlapping

intervals A and B, arranged as follows:

(20.10)

We have also labeled the regions X, Y, Z. All of these are spacelike regions. Comparing

causal diamonds, Lorentz invariance, as discussed in section 19.2, implies

SA = SX[Y , SB = SY [Z (20.11)

and

SA[B = SX[Y [Z , SA\B = SY . (20.12)
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Now, strong subadditivity implies

SA + SB � SA[B + SA\B (20.13)

i.e., (with [’s implied)

SXY + SY Z � SY + SXY Z . (20.14)

Parameterize the region lengths by r and R with

`(A) =
p
rR, `(Y ) = R . (20.15)

In the vacuum state, the entanglement entropy can depend only on the proper length

of the region. Thus SSA becomes

2S(
p
rR) � S(R) + S(r) . (20.16)

Expanding with R = r + ✏, this means

rS 00(r) + S 0(r)  0 (20.17)

or equivalently

C 0(r)  0, C(r) = rS 0(r) . (20.18)

(20.18) is the main technical result: the function C(r) is monotonic as a function of

interval size. Now for the interpretation. First, suppose our QFT is scale invariant. In

this case, from (19.8), the entanglement entropy is

Scft(r) =
c

3
log

r

✏UV
. (20.19)

Thus the Casini-Huerta C-function C(r) is proportional to the central charge at a

critical point,

Ccft(r) ⌘ rS 0(r) =
c

3
. (20.20)

Now, if the QFT is not scale invariant, then it describes an RG flow between some

UV CFT and some IR CFT. That is, the QFT at very short distances is equivalent

to CFTUV , and the QFT at very long distances is CFTIR. We are interpreting the

physical distance r as the RG scale. But we know that at the fixed points, C(r) is
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given by the central charge,

C(r ! 0) =
cUV

3
, C(r ! 1) =

cIR
3

. (20.21)

Integrating the equation C 0(r)  0 from short to long distances,Z 1

0

drC 0(r)  0 . (20.22)

This proves the c-theorem,

cUV � cIR . (20.23)

Note that nowhere in this proof have we used the concept of a quantum field!!! We

used only locality, Lorentz invariant, quantum mechanics, and unitarity (in the guise

of the SSA inequality).

20.4 Entanglement proof of the F theorem

Casini and Huerta’s proof of the F theorem d = 3 is quite similar. In this case, there

is no other known way to prove that RG flows are irreversible – standard field theory

methods in even dimension rely on the conformal anomaly, which does not exist in odd

dimensions.

We will just briefly sketch the argument, since it is similar to d = 2. In a 3d CFT in

vacuum,

SCFT
A ⇠ r

✏UV
� S̃ (20.24)

where S̃ is a constant, independent of r and ✏UV . Therefore a natural guess for the

monotonic function is

F (r) = rS 0(r)� S(r) , (20.25)

which agrees with S̃ at a critical point,

FCFT = S̃ . (20.26)

To use SSA, we use a more clever version of the boosted-interval setup. Two boosted
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balls, won’t work, because the union of the causal domain of two boosted balls is not

the causal domain of any ball. Instead we must arrange an infinite number of boosted

regions. Projected onto a single time slice, they look like this:⇤

(20.27)

An argument similar to 2d implies that F 0(r)  0, which establishes the F -theorem:

FUV � FIR . (20.28)

⇤Figure taken from Casini and Huerta 1202.5650.
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