
19 Entanglement Entropy in Quantum Field The-

ory

So far we have discussed entanglement in ordinary quantum mechanics, where the

Hilbert space of a finite region is finite dimensional. Now we will discuss geometric

entanglement entropy in quantum field theory. Space (not spacetime) is divided into

two regions, A and B, by a continuous curve:

(19.1)

This picture is at a fixed time. Region A is drawn as a circle, but for now it could be

any shape. (It could also be disjoint, but we will assume it is connected unless specified

otherwise.)

Quantum field theory is strictly speaking not bipartite,

HAB 6= HA ⌦HB . (19.2)

There are two things to worry about: first, in gauge theories, you cannot really localize

states. The gauge constraint is applied to the full system, so by looking at any sub-

region, you cannot decide whether it is a physical state obeying the constraint. This

issue (which also appears in ordinary quantum mechanical gauge systems) has been

addressed in some nice papers just in the last year or so, and we will ignore it entirely.

It turns out to not a↵ect the discussion that follows very much.

The second issue is UV divergences. In a continuum QFT there are UV modes at

arbitrarily small scales across the dividing surface @A, and this makes it impossible to

actually split the full Hilbert space. To deal with this, we must impose a UV cuto↵
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by introducing the ‘lattice scale’ ✏UV . With a finite cuto↵, the Hilbert space of a

finite region is finite-dimensional, and most of the results of the previous section — in

particular, positivity of relative entropy and strong subadditivity — apply to QFT. In

the end we usually want to regulate the divergences somehow, but the leftover finite

pieces do not immediately obey the same properties, so we need to be careful about

tracking cuto↵ dependence throughout the problem.

19.1 Structure of the Entanglement Entropy

The divergent terms in SA come from UV physics. In the UV, any finite energy state

is the same as the vacuum state. Therefore to discuss the structure of the divergent

terms we can restrict to ⇢ = |0ih0|, the vacuum state of the full system.

UV divergences

The divergent terms depend on the theory and on the shape of region A. In a local

QFT, we expect the divergent piece to be a local integral over the entangling surface

@A,

S(div)
A ⇠

Z
@A

dd�2�
p
hF [Kab, hhab] , (19.3)

where F is some (theory-dependent) functional of the extrinsic curvature and induced

metric on @A. This is for the same reason that when we do renormalization, we are

only allowed to add local counterterms to the Lagrangian; non-local terms come from

IR physics.

Let’s organize (19.3) as an expansion in powers of Kab. Since Kab ⇠ 1/LA, this is an

expansion in powers of the size LA. What sort of terms can appear? In a pure state,

SA = SB, an in particular S(div)
A = S(div)

B . The extrinsic curvature is K ⇠ rn with n

the unit normal; this flips sign if we consider region A vs its complement, region B.

Therefore S(div)
A = S(div)

B implies that only even powers of Kab are allowed:

S(div)
A ⇠ a

1

Ld�2

A + a
2

Ld�4

A + · · · , (19.4)

where ai depend on the theory but not on LA.
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The leading term in (19.4) is a UV divergence proportional to Area(A). This makes

sense: UV modes entangled across @A give a divergent contribution, and the number

of these modes is proportional to the area.

General structure and universal terms

Now let us further assume the theory is scale invariant. In the vacuum state of a

scale invariant theory, the only scales in the problem are ✏UV and LA. Therefore,

by dimensional analysis, a
1

⇠ ✏2�d
UV , a

2

⇠ ✏4�d
UV , etc. Thus, allowing also for a finite

contribution, we find the general behavior of the entanglement entropy in a CFT. In

odd dimensions d:

SCFT
A ⇠ bd�2

✓
LA

✏UV

◆d�2

+ bd�4

✓
LA

✏UV

◆d�4

+ · · ·+ b
1

LA

✏UV
+(�1)

d�1
2 S̃+O(✏UV ) , (19.5)

and in even dimensions:

SCFT
A ⇠ bd�2

✓
LA

✏UV

◆d�2

+ bd�4

✓
LA

✏UV

◆d�4

+ · · ·+ b
2

✓
LA

✏UV

◆
2

(19.6)

+(�1)
d�2
2 S̃ log

LA

✏UV
+ const +O(✏UV ) ,

The di↵erence between even and odd comes from the fact that the “1/✏0UV ” term that

would appear in even dimensions actually turns into a log divergence (just as it does

in Feynman diagrams). The powers of (�1) are inserted by convention.

In the vacuum state, the bi and S̃ depend on the theory, but not on LA or ✏UV .

In a non-scale-invariant QFT, or in an excited state of a CFT, there are other scales.⇤

So in general, S̃ depends on the theory, the shape, and the state ⇢total. Furthermore, S̃ is

universal in the sense that it does not depend on ambiguities in the choice of regulator.

For this reason it is sometimes called the renormalized entanglement entropy. †

⇤This is sometimes confusing in the CFT case but obviously true: even in a scale invariant theory,
an excited state with lumps of stu↵ 1 meter apart is di↵erent from an excited state with lumps of
stu↵ 2 meters apart!

†The fact that it is independent of regulator is clear in the even dimensional case, since it is the
coe�cient of a log. It is less clear for the constant term odd dimensions, since evidently shifting
✏UV ! ✏UV + a would change the finite term. In practice it seems to be well defined in CFT for
reasons I won’t get into here, but I’m not sure about the non-conformal case.
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Area vs volume terms

The leading UV divergence is always proportional to Area(A), in any state. In the

vacuum we do not expect any extensive contribution to S̃, but in a random excited

state, we expect

S̃ ⇠ Volume(A) . (19.7)

This is for the same reason that we argued for volume scaling in a random state of a

lattice system. In a highly excited random state, the IR modes that contribute to S̃

should all be highly entangled with the outside, and the number of such modes scales

with volume.

Example: 2d CFT in vacuum

As a simple example, consider a 2d CFT in the vacuum state of the full system. Space

is a line, and region A is an interval of length LA. In this case the entanglement entropy

can be computed exactly (we will do this calculation later in the course) with the result

SA =
c

3
log

LA

✏UV
. (19.8)

Here c is the central charge of the CFT (which, remember, roughly speaking counts the

degrees of freedom). This agrees with the general formula in even spacetime dimensions

(19.6), with S̃ = c
3

.

If we instead consider a highly excited state, then we can’t do the calculation in general,

but in cases where it can be done the result in a typical state scales as S̃ ⇠ cLA.

19.2 Lorentz invariance

In a Lorentz-invariant QFT, the density matrix of a spatial region A must contain all

of the same information as the density matrix of a spatial region A0 that shares the
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same causal diamond. That is, for this setup:

(19.9)

we must have

SA = SA0 . (19.10)

In words, this is because if we know everything about A, we can time-evolve to learn

everything about A0. In formulas, it is because the reduced density matrices are related

by (perhaps very complicated and nonlocal!) unitary operation,

⇢A0 = U †⇢AU . (19.11)
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