
18 Introduction to Entanglement Entropy

The next few lectures are on entanglement entropy in quantum mechanics, in quantum

field theory, and finally in quantum gravity. Here’s a brief preview: Entanglement

entropy is a measure of how quantum information is stored in a quantum state. With

some care, it can be defined in quantum field theory, and although it is di�cult to

calculate, it can be used to gain insight into fundamental questions like the nature of

the renormalization group. In holographic systems, entanglement entropy is encoded

in geometric features of the bulk geometry.

We will start at the beginning with discrete quantum systems and work our way up to

quantum gravity.

References: Harlow’s lectures on quantum information in quantum gravity, available on

the arxiv, may be useful. See also Nielsen and Chuang’s introductory book on quantum

information for derivations of various statements about matrices, traces, positivity, etc.

18.1 Definition and Basics

A bipartite system is a system with Hilbert space equal to the direct product of two

factors,

HAB = HA ⌦HB . (18.1)

Starting with a general (pure or mixed) state of the full system ⇢, the reduced density

matrix of a subsystem is defined by the partial trace,

⇢A = trB ⇢ (18.2)

and the entanglement entropy is the von Neumann entropy of the reduced density

matrix,

SA ⌘ � tr ⇢A log ⇢A . (18.3)

Example: 2 qubit system

If each subsystem A or B is a single qubit, then the Hilbert space of the full system is
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spanned by

|00i, |01i, |10i, |11i , (18.4)

where the first bit refers to A and the second bit to B, i.e., we use the shorthand

|iji ⌘ |iiA|jiB ⌘ |iiA ⌦ |jiB . (18.5)

Suppose the system is in the pure state

| i =
1p
2

(|00i+ |11i) , (18.6)

so ⇢ = | ih |. As a 4x4 matrix, ⇢ has diagonal and o↵-diagonal elements. Diago-

nal density matrices are just classical probability distributions, but the o↵-diagonal

elements indicate entanglement and are intrinsically quantum.

The reduced density matrix of system A is

⇢A = trB ⇢

=
1

2
Bh0| (|00i+ |11i) (h11| + h00|) |0iB

+
1

2
Bh1| (|00i+ |11i) (h11| + h00|) |1iB

=
1

2

�|0iA Ah0| + |1iA Ah1|
�

/ 1
2x2

. (18.7)

The last line says ⇢A is proportional to the identity matrix of a 2-state system. In this

case we say ⇢A is maximally mixed, and the initial state | i is maximally entangled.

The entanglement entropy of subsystem A is easy to calculate for a diagonal matrix,

SA = � tr ⇢A log ⇢A

= �2⇥ 1

4
log

1

4
= log 2 . (18.8)

Interpretation of entanglement entropy

In fact the 2-qubit example illustrates a useful way to put entanglement entropy into
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words:

Entanglement entropy counts the number of entangled bits between A and B.

If we had k qubits in system A and k qubits in system B, then in a maximally entangled

state SA = k log 2. So SA counts the number of bits, or equivalently, eSA counts the

number of entangled states (since k qubits have 2k states).

Rephrased slightly:

Given a state ⇢A with entanglement entropy SA, the quantity eSA is the minimal number

of auxiliary states that we would need to entangle with A in order to obtain ⇢A from a

pure state of the enlarged system.

Schmidt decomposition

A very useful tool is the following theorem, called the Schmidt decomposition: Suppose

we have a system AB in a pure state | i. Then there exist orthonormal states |iiA of

A and |iiB of B such that

| i =
X

i

�i|iiA|̃iiB , (18.9)

with �i real numbers in the range [0, 1] satisfying

X
i

�2

i = 1 . (18.10)

The number of terms in the sum is (at most) the dimension of the smaller Hilbert space

HA or HB.

Proof: See Wikipedia, or Nielsen and Chuang chapter 2.

If A is small and B is big, this is intuitive. It says we can pick a basis for |iiA, and each

of these states will be correlated with a particular state of system B. The thermofield

double is an obvious example.

Complement subsystems

An immediate consequence of the Schmidt decomposition is that a pure state of system
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AB has

SA = SB (pure states) . (18.11)

To see this, write the reduced density matrices in the Schmidt basis,

⇢A =
X

i

�2

i |iiA Ahi| , ⇢B =
X

i

�2

i |iiB Bhi| . (18.12)

Both density matrices have eigenvalues �2

i so they have the same entropy. (18.11) does

not hold for mixed states of AB.

18.2 Geometric entanglement entropy

Entanglement entropy can be defined whenever the Hilbert space splits into two factors.

A very important example is when we define A as a subregion of space.

Example: N spins on a lattice in 1+1 dimensions

Let’s arrange N spins in a line. Define A to be a spatial region containing k spins, and

B = AC is everything else:

The most general state of this system is

| i =
X
{si}

cs1···sN
|s

1

i|s
2

i · · · |sNi (18.13)

where si = 0 or 1 (meaning ‘up’ or ‘down’), and the c’s are complex numbers.

Scaling with system size

Let’s restrict to 1 ⌧ |A| ⌧ |B|, so that we can think of subsystem A as large and B

as infinite. In a random state, i.e., one in which the coe�cients cij··· are drawn from

a uniform distribution, we expect any subsystem A to be almost maximally entangled

with B. In the language of the Schmidt decomposition, this means that �i is nonzero

168



and ⇠ 1/
p

2k for a complete basis of states |iiA. In fact this is a theorem, see Harlow’s

lectures for the exact statement.

Accordingly, the entanglement entropy scales as the number of spins in region A. In

1+1d this is linear in the size of A, and more generally,

SA ⇠ Volume(A) (random state). (18.14)

In other words, most states in the Hilbert space of the full system have entanglement

scaling with volume.

However, often we are interested in the groundstate. Ground states of a local Hamilto-

nian are very non-generic, and the corresponding entanglement entropies obey special

scaling laws. Usually, if the system is gapped (i.e., correlations die o↵ exponentially),

the ground state must obey the area law :

SA ⇠ Area(A) (ground state of local, gapped Hamiltonian) . (18.15)

(This is a theorem in 1+1d, and usually true in higher dimensions.)

Thus groundstates occupy a tiny, special corner of the Hilbert space. This is a corner

with especially low ‘complexity.’ Intuitively speaking, a large degree of entnaglement

is what makes quantum information exponentially more powerful than classical infor-

mation; so states with lower entanglement entropy are less complex. More specifically,

this actually means that you can encode a groundstate wavefunction with far fewer

parameters than the 2N complex numbers appearing in (18.13).

DMRG

In 1+1d, the area law becomes simply

SA ⇠ const (18.16)

independent of the system size. This special feature is responsible for a hugely impor-

tant technique in quantum condensed matter called the density matrix renormalization

group (DMRG). This technique is used to e�ciently compute groundstate wavefunc-
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tions of 1+1d systems using a computer. This would not be possible for general states,

since (we think) classical computers require exponential time to simulate quantum sys-

tems. But (18.16) means that, in a precise sense, groundstates of gapped 1d systems

are no more complex than classical systems.

Scaling at a critical point

The area law applies to gapped systems. Near a critical point, where dof become mass-

less and long-distance correlations are power-law instead of exponentially suppressed,

the area law can be violated. In a 1+1d critical system, and therefore also in 1+1d

conformal field theory, (18.16) is replaced by

SA ⇠ log LA (18.17)

where LA is the size of region A. This is bigger than the area law, but still much lower

than the volume-scaling of a random state.

18.3 Entropy Inequalities

Relative entropy

Much of the recent progress in QFT based on entanglement comes from a few inequal-

ities obeyed by entanglement entropy. Define the relative entropy

S(⇢||�) ⌘ tr ⇢ log ⇢� tr ⇢ log � . (18.18)

(Note that this is not symmetric in ⇢,�.) This obeys

S(⇢||�) � 0 (18.19)

with equality if and only if ⇢ = �. The proof of this statement is straightforward,

see Wikipedia. It just involves some matrix manipulations. The key ingredient is the

fact that density matrices in quantum mechanics are very special: they have a positive

spectral decomposition,

⇢ =
X

i

piviv
⇤
i (18.20)
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where pi is non-negative and vi is a basis vector. This is necessary for quantum me-

chanics to have a sensible probabilistic interpretation and is closely related to unitarity.

The relative entropy can be viewed as a measure of how ‘distinguishable’ ⇢ and �

are. In the classical case (diagonal ⇢ and �), it is error we will make in predicting

the uncertainty of a random process if we think the probability distribution is �, but

actually it is ⇢. Given this interpretation, positivity is obvious — clearly we will never

do better using the wrong distribution.

Triangle inequality

Positivity or relative entropy implies the triangle inequality,

|SA � SB|  SAB . (18.21)

Mutual information

Define the mutual information,

I(A, B) ⌘ SA + SB � SAB . (18.22)

This can be written as a relative entropy, and is therefore non-negative:

I(A, B) = S(⇢AB||⇢A ⌦ ⇢B) � 0 . (18.23)

Roughly, I(A, B) measures the amount of information that A has about B (or vice-

versa, since it is symmetric).

In a pure state of AB, the only correlations between A and B come from entanglement,

so in this case I(A, B) measures entanglement between A and B. However, in a mixed

state, I(A, B) also gets classical contributions. For example in a 2-qubit system, it is

easy to check that the classical mixed state

⇢AB / |00ih00| + |11ih11| (18.24)

has non-zero mutual information.
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Strong subadditivity

So far we have discussed partitioning a system into two pieces A and B, but we can

partition further and find new inequalities. The strong subadditivity inequality (SSA

for short) applied to a tripartite system HABC = HA ⌦HB ⌦HC , is

SABC + SB  SAB + SBC . (18.25)

This is less mysterious if written in terms of the mutual information,

I(A, B)  I(A, BC) . (18.26)

Although this inequality seems obvious — clearly A has more information about BC

than about B alone — and is ‘just’ a feature of positive matrices, it is surprisingly

di�cult to prove. See Nielsen and Chuang for a totally unenlightening derivation.

Sometimes it is useful to express (18.25) in di↵erent notation, where A and B are two

overlapping subsystems, which are not independent:

SA[B + SA\B  SA + SB . (18.27)

Exercise: Positivity of classical relative entropy

Prove that the classical relative entropy is non-negative. That is, prove (18.19), as-

suming ⇢ and � are diagonal.

Exercise: Mutual information practice

Consider a 2-qubit system. First, calculate the mutual information of the two bits in

the classical mixed state

⇢ = 1

2

(|00ih00| + |11ih 11|) . (18.28)

This is a clearly a state with the maximal amount of classical correlation — if we

measure one bit, we know the value of the second bit.

Now, what is the maximal amount of mutual information for a quantum (pure or
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mixed) state of 2 qubits? Write an example of a state with this maximal amount of

mutual information. (Quantum states with more mutual information than is possible

in any classical state are sometimes called supercorrelated.)

Exercise: Purification and the Triangle Inequality

Use strong subadditivity to prove the following identities for a tripartite system:

SA  SAB + SBC (18.29)

SA  SAB + SAC (18.30)

SAB � |SA � SB| (18.31)

Hint: Purify the tripartite system that appears in strong subadditivity by adding a

4th system, D, with ABCD in a pure state. This is always possible.
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