
17 Eternal Black Holes and Entanglement

References: This section is based mostly on Maldacena hep-th/0106112; see also the

relevant section of Harlow’s review lectures, 1409.1231.

An eternal black hole is the black hole with the full, two-sided Penrose diagram. It

has a past singularity, a future singularity, and two asymptotic regions:

(17.1)

This is to be distinguished from a black hole that forms from gravitational collapse,

which has no past singularity and no second asymptotic region on the ‘left’ of the

Penrose diagram. Although we often use the maximally extended Penrose diagram to

discuss all sorts of black holes, it is only in the eternal black hole that we should really

take the left side of the Penrose diagram seriously.

An eternal black hole in AdS — the maximally extended AdS-Schwarzschild spacetime

— has two boundaries. This means that it is dual to two copies of the CFT. In fact,

the connection between thermal field theory and this ‘doubling’ of degrees of freedom

was well known long ago, and is called the thermofield double formalism. First we will

describe this formalism in QFT, then we’ll make the connection to AdS black holes.

17.1 Thermofield double formalism

Consider any QFT, with Hamiltonian H and complete set of eigenstate |ni,

H|ni = En|ni . (17.2)
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The thermofield double formalism is a trick to treat the thermal, mixed state ⇢ = e��H

as a pure state in a bigger system. First we double the degrees of freedom, i.e., we

consider a new QFT which is two copies of the original QFT. If the theory is defined

by a Lagrangian, then for every field � in the original QFT, there are two fields �
1

(x
1

)

and �
2

(x
2

) in the doubled QFT. These two fields live in di↵erent spacetimes x
1

and

x
2

, and are not coupled in the Lagrangian at all. The states of the doubled QFT are

|mi
1

|ni
2

. (17.3)

Now in this doubled system we consider the thermofield double state:

|TFDi = 1p
Z(�)

X
n

e��En/2|ni
1

|ni
2

. (17.4)

This is a particular pure state in the doubled system. The density matrix of the doubled

QFT in this state is

⇢total = |TFDihTFD| . (17.5)

The reduced density matrix of system 1 is

⇢
1

= tr
2

⇢total

=
X
m

2

hm|
 X

n,n0

e��En/2|ni
1

|ni
2 2

hn0|
2

hn0|e��En0/2

!
|mi

2

=
X
n

e��En |ni
1 1

hn|

= e��H1 (17.6)

Therefore, if we restrict our attention to system 1, this pure state in the doubled system

is indistinguishable from a thermal state. For example, if O
1

is made of local operators

acting on system 1, O
1

= �
1

(x
1

)�
1

(y
1

) · · · , then

hTFD|O
1

|TFDi = 1

Z(�)
Tr H1 e

��H1O
1

. (17.7)

This procedure is called purifying the thermal state. In fact, any mixed state can be

purified by adding enough auxiliary states and tracing them out.

Although systems 1 and 2 are not coupled in the Lagrangian of the doubled system,
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they are correlated because we are in this particular entangled state. For example, if

O
1

is built from operators acting on system 1 and O
2

is built from operators acting on

system 2, then

hTFD|O
1

O
2

|TFDi (17.8)

can be non-zero.

The Hamiltonian

The choice of Hamiltonian acting on the doubled system is up to us. Two convenient

choices are

Htot = H
1

�H
2

and H̃tot = H
1

+H
2

. (17.9)

For our purposes, we will just use Htot, but H̃tot is also useful in other contexts. Under

Htot, the TFD state is time-independent, since the phases cancel:

|TFD(t)i ⌘ e�iHtot |TFDi =
X
n

e��En/2e�i(H1�H2)|ni
1

|ni
2

= |TFDi . (17.10)

17.2 Holographic dual of the eternal black hole

The statement

Maldacena’s proposal is that the eternal black hole depicted in (17.1) is dual to two

copies of the CFT, in the thermofield double state |TFDi. Each asymptotic boundary

of AdS is a copy of the original dual CFT. So, for example, to compute correlation

functions like

hTFD|�
1

(x
1

)�
2

(x
2

)|TFDi (17.11)

we would use Witten diagrams with � inserted on the left boundary, and � inserted on

the right boundary. Note that the local bulk fields are not doubled: there is just one

bulk field � dual to the boundary operators �
1

and �
2

, but this makes sense because

we have to specify double the boundary conditions for �. The boundary condition for

� on the left acts like a source for �
2

, and the boundary condition for � on the right

acts like a source for �
1

.
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The Hamiltonian

The Hamiltonian Htot in (17.9) has a natural bulk interpretation. It is dual to the

bulk Hamiltonian that generates time evolution along the isometry @t, where t is the

usual Schwarzschild coordinate. Recall (or look back at a textbook on the Kruskal

coordinate change) that the Schwarzschild t coordinate runs ‘backwards’ on the left

side of the Penrose diagram. That is, all of the spatial slices drawn in this figure are

equivalent under the @t isometry:

(17.12)

This corresponds to the minus sign in Htot = H
1

�H
2

.

Derivation

To justify the claim that the eternal black hole is dual to the TFD state, we will apply

the AdS/CFT dictionary (14.2), in the form

Zgravity[@M = ⌃] = Zcft[⌃] . (17.13)

(Here M is the bulk manifold, and the meaning of the lhs is the gravity path integral

with boundary condition @M = ⌃.)

First, the CFT: The Euclidean path integral that prepares the TFD state is a path

integral on an interval of length �/2, times a circle:

⌃ = Interval�/2 ⇥ Sd�1 . (17.14)
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Pictorially,

(17.15)

This path integral has two open cuts (red), at the ends of the interval. We interpret the

left cut as defining a state in system 2, and the right cut as defining a state in system

1. That is, this picture should be interpreted as a rule for computing the transition

amplitude with field data '
1

and '
2

specified at the ends of the interval. To confirm

that this path integral really prepares the TFD state, all we need to do is check that

it computes the correct transition amplitudes. The path integral with these boundary

conditions is73

1

h'
1

|
2

h'
2

|TFDi = h'
1

|e��H/2|'⇤
2

i (17.16)

=
X
n

'
1

|nihn|'̃
2

ie��En/2 (17.17)

=
X
n

e��En/2h'
1

|ni
1

h'
2

|ni
2

(17.18)

These are precisely the matrix elements of the state |TFDi defined in (17.4). So, as

claimed, this is the Euclidean path integral that prepares |TFDi.

Now that we’ve produced this state from a Euclidean path integral on the manifold

⌃, we can apply (17.13). We must find a Euclidean gravity solution with conformal

boundary condition @M = Interval�/2⇥Sd�1. In fact, half of the Euclidean black hole

has precisely this boundary condition. That is, we consider the Euclidean Scharzschild-

AdS solution and restrict to tE 2 [0, �/2] instead of the full range tE 2 [0, �]. The

(tE, r) portion of this Eulidean spacetime makes a half-disk; the boundary of the half-

disk is Interval�/2 ⇥Sd�1. The half-disk is cut down the middle; this cut is interpreted

as the time=0 surface of the Lorentzian spacetime. Pictorially, the bulk spacetime has

a Euclidean piece that prepares the state, then a Lorentzian piece describing the time

73The tildes indicate the conjugate state.
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evolution in Minkowski signature:

(17.19)

The red blobs in this picture denote the Sd�1’s at the end of the interval on the

boundary, the red circles in (17.15).

17.3 ER=EPR

Let’s describe this result in words. The left side of the Penrose diagram is dual to

CFT
2

, and the right side is dual to CFT
1

. The Einstein-Rosen bridge connecting

to the two sides, the black hole interior itself, are somehow ‘created’ by entangling

CFT
1

with CFT
2

. In fact this is a precise statement: In CFT language, correlators

between the two CFTs like hTFD|O
1

O
2

|TFDi are non-zero only because we are in

the entangled state |TFDi. After all, the two CFTs are not coupled. In the bulk,

these correlations are nonzero because we can draw Witten diagrams going through

the interior. For very massive fields or high energies, the left-right correlation functions

can be approximated by geodesics that pass through the black hole interior. Without

a wormhole connecting the two sides, there would be no such correlations.

This idea and its generalizations have recently been given the slogan ‘ER=EPR’ (by

Maldacena and Susskind): Einstein-Rosen bridges are equivalent to entanglement (as

discussed by Einstein-Podolsky-Rosen). This slogan is only entirely precise and well

defined in the semiclassical limit, describing the eternal black hole and similar space-

times, but the idea is that some more general construction should make sense in the

very quantum, non-geometrical limit.
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17.4 Comments in information loss in AdS/CFT

Hawking’s information loss paradox relied on a black hole that forms from collapse,

then evaporates. In AdS, this only happens for small black holes. These black holes

are not in thermal equilibrium, and are di�cult to address precisely using AdS/CFT.

Of course, the CFT is always unitary, so if we believe AdS/CFT (or use AdS/CFT to

define a theory of quantum gravity) then obviously this evaporation process, however

it is described in CFT, must be unitary. This strongly suggests that unitarity should

be preserved, and locality or some other tenet of e↵ective field theory must be violated.

However it is not very satisfying, since it does not answer the question of what went

wrong with Hawking’s calculation. Presumably the answer is that local e↵ective field

theory is not quite right in non-perturbative quantum gravity, but we do not really

understand how to characterize this breakdown. This is a very important open question

in current research.

17.5 Maldacena’s information paradox

Maldacena introduced a di↵erent version of the information paradox that applies to

large, eternal black holes. This version is easier to address in AdS/CFT. The idea is

to first perturb the thermal state by inserting an operator O
2

in CFT
2

,

|TFDi ! |]TFDi = (1 + ✏O
2

)|TFDi . (17.20)

This changes the reduced density matrix of system 1,

⇢
1

! ⇢̃
1

= e��H1 + tiny corrections . (17.21)

Now, we compute expectation values in CFT
1

,

h]TFD|O
1

|]TFDi (17.22)

in the perturbed state. To first order in the perturbation, this is the two-sided corre-

lation function

hO
1

i ⇠ G
12

⌘ hTFD|O
1

O
2

|TFDi . (17.23)
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Now we can produce a contradiction by waiting a very long time, so this correlation

function decays. On the gravity side, if we hold O
2

at a particular time and send O
1

to very late times, then the geodesic distance between these two points grows linearly

with time, forever. Therefore the correlation function must decay as

Ggravity
12

⇠ e�const⇥t/� (17.24)

for t � �. This decays exponentially to zero. At very late times, it therefore becomes

exactly thermal, with arbitrarily small corrections.

This contradicts unitarity of the CFT. In the CFT, any perturbation of the thermal

state should stay forever a perturbation of the thermal state: it will of course become

scrambled and appear to thermalize, but it should never forget the initial perturbation

completely, so it should never become arbitrarily close to the thermal state. In fact

the corrections to the thermal state should be suppressed by the entropy, but finite:

GCFT
12

⇠ e�const⇥S (17.25)

for t � �. In summary, at very late times, gravity ‘forget’ the initial perturbation, but

a unitary CFT does not:

Ggravity
12

⌧ Gunitary
12

. (17.26)

However is this paradox resolved? The answer is that we have neglected non-perturbative

contributions of the gravity side of order e�1/GN ⇠ e�S. For example, there is another

saddlepoint (the thermal AdS saddle) and fluctuations around this saddle will also

contribution to the two-sided correlation function at this order.

Although this tells us where the gravity derivation went wrong, it does not tell us

exactly how to recover the lost information in quantum gravity, i.e., without referring

to the dual CFT. Presumably this would require treating the full non-perturbative

string theory, which is currently not possible.
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