
15 Correlation Functions in AdS/CFT

As a first application of (14.2), we will use the gravity side to derive the correlators of

a conformal field theory. First we’ll start with a purely QFT discussion of correlators

in a theory with conformal invariance, then reproduce these results from gravity.

By the way, you’ve already seen one example of CFT correlators compute from gravity:

the absorption cross section calculation. That was related to a CFT correlator at finite

temperature. In this section are deriving correlators in the vacuum state, i.e., empty

AdS.

15.1 Vacuum correlation functions in CFT

This will be a brief introduction to CFT. For details, see: Polchinski’s String Theory

book; Kiritsis’s String Theory book; or the big yellow CFT book by Di Francesco et

al.

The group of conformal symmetries of Rd is SO(d + 1, 1). In Lorentz signature, the

conformal symmetries of Rd�1,1 are SO(d, 2). The generators of SO(d, 2) are

Pµ = �i@µ (15.1)

Lµ⌫ = �i(xµ@⌫ � x⌫@µ)

D = �ixµ@µ

Kµ = �i(2xµx
⌫@⌫ � x2@µ)

The the first two lines are translations, rotations, and boosts; these generate the

Poincare group (which is 10-dimensional in d = 4). The 3rd line is the dilatation,

or scale generator, since under xµ ! xµ + i✏Dµ, the coordinate is just rescaled,

xµ ! xµ(1 + ✏). The last line is called the special conformal transformation.

One way to derive (15.1) is to find the conformal Killing vectors of Minkowski space.

These are defined to be vectors V µ obeying

LV ⌘µ⌫ = f(x)⌘µ⌫ , (15.2)
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where f is any function. This is the infinitessimal version of the definition of a conformal

symmetry, which maps ds2 ! e⌦(x)ds2.

Operators in a CFT can be organized under representations of the conformal group.

We define primary operators to obey70

[D, O(0)] = �i�O(0) (15.3)

[Kµ, O(0)] = 0 . (15.4)

The dilatation eigenvalue � is called the scaling dimension of O. The second condition

is like a highest weight condition. We can build the full representation by acting on

O(x) with the conformal generators, so for example @muO(x) is a descendant operator.

The finite version of of the D commutator says that under a rescaling x ! �x, we have

O(x) ! ��O(�x). More generally, primaries obey

O0(x0) =

����det
@x

0µ

@x⌫

������/d

O(x) . (15.5)

For a correlation function of n primaries this implies

hO
1

(�x
1

) · · ·On(�xn)i = ���1��2�···��nhO
1

(x
1

) · · ·On(xn)i . (15.6)

The special conformal transformations also impose requirements on correlators. It

turns out that all the conformal generators together completely fix the 2 and 3-point

functions of a CFT, up to overall factors. The two-point function of equal-weight fields

is

hO
1

(x
1

)O
2

(x
2

)i =
c
12

|x
1

� x
2

|2�

(�
1

= �
2

⌘ �) (15.7)

and it must vanish if �
1

6= �
2

. The number c
12

can be rescaled by rescaling our nor-

malization of the operators. Often we pick an orthonormal basis of primary operators,

so that cij = �ij.

70This is for scalars. Operators with spin would also have the usual rule for action by the Lorentz
group, [Lµ⌫ , O(0)] = ⌃µ⌫O(0).

137



Similarly, the only 3-point function allowed by conformal invariance is

hO
1

(x
1

)O
2

(x
2

)O
3

(x
3
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123

|x
12

|�1+�2��3 |x
23

|�2+�3��1|x
31

|�3+�1��2
, (15.8)

where

xij ⌘ xi � xj . (15.9)

The number cijk, called an OPE coe�cient (for operator product expansion), is a

real physical prediction of the theory, since we’ve already fixed normalizations via the

2-point function.

In fact, the set of scaling dimensions �i and the OPE coe�cients cijk are all the data

of a CFT. This is because higher correlators can be computed, at least in principle, by

sewing together 3-point functions and summing over intermediate states.

The 4-point function is not completely fixed by conformal symmetry, but it is highly

constrained. With equal external weights �
1,2,3,4 = �, the most general form of the

4-point correlator is

hO(x
1

)O(x
2

)O(x
3

)O(x
4

)i = |x
12

|�2�|x
34

|�2�F (u, v) (15.10)

where F is an arbitrary function of the conformal cross ratios,

u =
x2

12

x2

34

x2

13

x2

24

, v =
x2

14

x2

23

x2

13

x2

24

. (15.11)

15.2 CFT Correlators from AdS Field Theory

We assume a strongly coupled, large-N CFT with a semiclassical holographic dual.

This is a limit where the gravity theory is weakly coupled, GN ⌧ `, and higher curva-

ture corrections can be neglected, `string ⌧ ` (here ` is the AdS radius). According to

the GKPW dictionary (14.2), we can compute the generating function of CFT corre-

lators on the gravity side by

Zcft[�0

] ⌘ he�
R

�0OiCFT (15.12)

⇡ exp

✓
�Sgrav + O(G0

N) + O(
`string

`AdS
)

◆
(15.13)

138



where Sgrav is the on-shell action for gravity subject to the boundary condition

� ! z��+d�
0

(x) (15.14)

as we approach the AdS boundary z ! 0.

So to compute CFT correlators, we need to understand how to compute the classical

action in AdS as a functional of the boundary conditions.

This material is explained very clearly in many places, so I will not repeat it here. I

recommend reading Witten’s original paper on the subject, where ‘Witten diagrams’

were introduced [hep-th/9802150]. In class, I followed, almost exactly Kiritsis’s String

Theory in a Nutshell sections 13.8.1 and 13.8.2. Read those sections before continuing!

15.3 Quantum corrections

So far we only used the classical theory on the gravity side. (Though on the CFT side,

this is a strongly coupled QFT calculation which is not at all classical!) What happens

when we include loop corrections in the gravity? The gravitational loop expansion is

organized into powers of GN . The classical term is ⇠ 1/GN . If we compute Witten

diagrams with loops, then we find an expansion in GN .

On the CFT side, this is an expansion in 1/Ndof , since recall the dictionary `d�1/GN ⇠
Ndof .

This implies something very special about CFTs with a semiclassical holographic dual:

These CFTs, although strongly coupled, have a meaningful expansion in 1/Ndof . Defin-

ing Ndof = N2 (since this notation holds in SU(N) gauge theory), this can be restated

as the fact that connected correlation functions are suppressed. That is, if we normalize

our operators by setting

hOOi ⇠ 1 (15.15)

(with the appropriate factors of x suppressed), then the 3-point function is suppressed,

hOOOi ⇠ 1

N
(15.16)
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and higher-point functions are dominated by their connected piece:

hOOOOi ⇠ hOOihOOi+ O(1/N2) . (15.17)

The explicit theories we know of with this sort of behavior are large-N gauge theories.

These have been studied for a long time, starting with a beautiful paper by ‘t Hooft

in the 70s where he showed that the Feynman diagrams of SU(N) gauge theory in the

large-N limit naturally reorganize themselves into something that looks roughly like

a string theory. I will not cover this, but I highly recommend you read about it in

section 13.1 of Kiritsis, or the big AdS/CFT review [hep-th/9905111].

Another consequence of the weak coupling constant GN on the gravity side is that

gravity has an approximate Fock space. That is, if we have a weakly coupled scalar

field on the gravity side, then we can construct 1-particle states, 2-particles states, etc,

by acting with creation operators. On the CFT side, this means for example that if we

have a primary O
1

of dimension �
1

, and another primary O
2

of dimension �
2

, then

there is a third primary O
1+2

of dimension

�O1+2 ⇡ �
1

+ �
2

+ O(1/N) . (15.18)

This is very special; it does not happen in general CFT, where states are just a some

strongly coupled mess and there is no way to ‘add’ some stu↵ to other stu↵ without

getting large corrections to the conserved charges from the strong interactions.

Following the gauge theory language, the operators dual to single bulk fields are called

‘single-trace operators’, and the operators like O
1+2

are called ‘multi-trace opera-

tors’ and usually just denoted by the product O
1

O
2

(or more complicated things like

O
1

⇤n@µ1···µ`
O

2

).

In words, (15.18) says that in a CFTs with a semiclassical holographic dual, low di-

mension operators have ‘small anomalous dimensions.’ I’ve restricted this statement

to low-dimension operators because these are the operators dual to bulk fields; high

dimension operators are dual to non-perturbative stu↵ like black hole microstates.
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