
14 The Statement of AdS/CFT

14.1 The Dictionary

Choose coordinates

ds2 =
`2

z2
(dz2 + dx2) (14.1)

on Euclidean AdSd+1

, where x is a coordinate on Rd. The boundary is at z = 0.

We showed above that scattering problems in gravity map to correlation functions

in CFT. In this relation the boundary value of the bulk field acted as a source for

a CFT operator. This is generalized by the following statement of the AdS/CFT

correspondence:
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(14.2)

This is called the GKPW dictionary.65 The index i runs over all the light fields in

the bulk e↵ective field theory, and correspondingly over all the low-dimension local

operators in CFT.

The left-hand side

The lhs of (14.2) is the gravitational partition function in asymptotically AdS space.

It is formally computed by the same path integral that we discussed in the context of

black hole thermodynamics. Since AdS has a boundary, we must provide boundary

conditions to define this path integral. The boundary conditions on bulk scalars are

�i(z, x) = zd���i
0

(x) + subleading as z ! 0 . (14.3)

where the mass of the bulk scalar is related to the scaling dimension of the CFT

operator by

m2 = �(d��) , � =
d

2
+

r
d2

4
+m2`2 . (14.4)

65After hep-th/9802109 by Gubser, Klebanov and Polyakov and hep-th/9802150 by Witten. I highly
recommend reading Witten’s paper.
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We will see below that (14.3) is the leading solution of the wave equation for a bulk

scalar of mass m.

Similar statements apply to all bulk fields, including the metric, though the boundary

condition and formula for the dimension is slightly modified for fields with spin. The

boundary conditions on the metric involve a choice of topology as well as the actual

metric, which is why we’ve indicated explicitly that Zgrav depends on the boundary

manifold @M .

The right-hand side

The rhs of (14.2) is the generating functional of correlators in a CFT. In this equation

the �i
0

(x) are sources, and the Oi(x) are CFT operators. Denoting the rhs of (14.2) by

Zcft[�0

], correlation functions are computed in the usual way,
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The mapping

Each light field in gravity corresponds to a local operator in CFT. The spin of the

bulk field is equal to the spin of the CFT operator; the mass of the bulk field fixes the

scaling dimension of the CFT operator. Here are some examples:

Scalar: A bulk scalar field �(z, x) is dual to a scalar operator in CFT. The boundary

value of � acts as a source in CFT. This is exactly the relationship we used in our

derivation of the absorption cross section of the black string.

Graviton: Every theory of gravity has a massless spin-2 particle, the graviton gµ⌫ . This

is dual the stress tensor Tµ⌫ in CFT. This makes sense since every CFT has a stress

tensor. The fact that the graviton is massless corresponds to the fact that the CFT

stress tensor is conserved. It also fixes the scaling dimension to �T = d. We will see

this in more detail later.

Vector: If our theory of gravity has a spin-1 vector field Aµ, then the dual CFT has a

spin-1 operator Jµ. If Aµ is massless, then �J = d� 1 and Jµ is a conserved current.

Otherwise, �J > d� 1 and the current is not conserved.
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This illustrated a general and important feature of AdS/CFT: gauge symmetries in the

bulk correspond to global symmetries in the CFT.

This is UV complete.

Note that CFTs are UV complete. Therefore (14.2) is a non-perturbative formulation of

a UV complete theory of quantum gravity. Shockingly, it is a definition of gravity from

a QFT without gravity. This is very powerful because we understand QFT relatively

well.

14.2 Example: IIB Strings and N = 4 Super-Yang-Mills

In some sense, it is believed that the AdS/CFT correspondence as summarized by

(14.2) holds for any theory of gravity and and CFT. That is, given a theory of gravity

we can use it to define a CFT via (14.2), and (perhaps) vice-versa. But aside from

certain examples, the correspondence is well defined and useful only in certain limits.

To illustrate this we turn to a specific example where AdS/CFT is understood in great

detail. This is the duality between IIB string theory and supersymmetric gauge theory:

IIB strings on AdS
5

⇥ S5 = Yang-Mills in 4d with N = 4 supersymmetry .

The gravity side

The string theory has adjustable scales ` ⌘ `AdS, the Planck scale `P , and the string

scale `s. We do not need to use any details of string theory except to say that at

low energies, the e↵ective action is Einstein + Matter + higher curvature corrections

suppressed by the string scale:66

SIIB ⇠ 1

GN

Z p
g
�
R + Lmatter + `4sR

4 + · · · � (14.6)

The stringy states have masses of order 1/`2s, so at energies below 1/`2s it is just an

ordinary e↵ective field theory like we discussed at the beginning of the course.

66There are no R2 corrections allowed with this amount of supersymmetry, but there are similar
examples with non-zero `2sR

2 terms.
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The CFT side

N = 4 Super-Yang-Mills is a highly supersymmetric gauge theory in 4d. Its matter

context is fixed uniquely by supersymmetry. It is just an SU(N) gauge field plus all

the matter fields required by supersymmetry, which include matrix-valued scalar fields

transforming the adjoint representation of SU(N) (unlike the fundamental representa-

tions we usually encounter in, say, QCD).

The gauge theory has two dimensionless parameters, N (ie the size of SU(N)) and the

Yang-Mills coupling constant gYM . Define the combination

� = g2YMN . (14.7)

This is called the ‘t Hooft coupling. It turns out that gauge theory at large N is most

naturally organized as an expansion in � and 1/N , rather than gYM and 1/N . This

is roughly because there are N fields running in loops, which changes the expansion

parameter from g2YM to �.

The mapping

The mapping from string theory parameters to CFT parameters is

� ⇠
✓
`AdS

`string

◆
4

(14.8)

and
`d�1

AdS

GN

⇠
✓
`AdS

`P

◆d�1

⇠ N2 . (14.9)

(with known coe�cients). We will see where this particular scaling comes from below in

more generality. For now we just want to note that this is a strong/weak duality : when

one side is easy, the other is (usually) hard. For example to have semiclassical Einstein

gravity, both loops and higher curvature corrections must be suppressed on the gravity

side. This means N � 1 and �� 1 so the CFT is very strongly coupled. On the other

hand if we consider a weakly coupled CFT, then `s � `AdS so stringy/higher curvature

corrections are not suppressed on the gravity side and this presumably behaves nothing

like ordinary gravity. (This is related to so-called ‘higher spin gravity’ or ‘Vasiliev

gravity’.)
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14.3 General requirements

Returning to AdS/CFT in general, we can make some similar observations about when

it produces a nice semiclassical theory of gravity. This requires as least two things:

1. Strongly coupled CFT. If the CFT is weakly coupled, then there are too many

operators. For example, a free scalar field  leads to conserved currents of every

integer spin:67

 @µ ,  @µ@⌫ ,  @µ@⌫@⇢ , etc. (14.10)

On the gravity side, this would require lots of massless or very light high-spin

states. This is something we expect in string theory at high enough energies but

not in our low energy e↵ective field theory.

So we must require that the CFT has a sparse spectrum of low-dimension op-

erators. This is sometimes called a large ‘gap’ in the spectrum, meaning a gap

between the low-energy fields and the stringy stu↵. This can only happen at

strong coupling, although there can also be strongly coupled theories with no

gap which therefore do not have nice gravity duals.

2. Large Ndof . In the super-Yang-Mills example, we said GN ⇠ 1/N2 so that the

large number of degrees of freedom is required for gravity to be weakly coupled.

This is true in general, too. There are two ways to see this, both of which we

will discuss in more detail later. I will purposely be a little vague about the

definition of Ndof since there are several reasonable ways to define it, and they

are all di↵erent.

First, note that black hole entropy is S / 1/GN , which is very large. Since

entropy is the log of the density of states, this means holographic CFTs must

have an enormous degeneracy of states at high energy. This means there are lots

of degrees of freedom. For example, a 2d CFT consisting of Nb free bosons has

S(E) / p
NbE.

Second, we can roughly measure the degrees of freedom by looking at the stress-

tensor 2pt function. This is fixed by conformal invariance up to a single coe�-

67This is schematic, you must add corrections to these operators for them to be conserved by the
EOM.
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cient:

hTµ⌫(x)T↵�(y)i = c⇥ (known function of x, y) . (14.11)

The coe�cient c is a measure of degrees of freedom.68 Consider again lots of free

fields: the stress tensors add, so the total stress tensor will have a very big 2pt

function.

On the gravity side, the stress tensor is dual to the graviton. We will see in detail

below how to calculate corelators, but for now su�ce it to say that hTT icft will be
related to a graviton scattering experiment hggigravity ⇠ 1/GN . Thus c ⇠ 1/GN

and we see again that weakly coupled gravity requires an enormous number of

degrees of freedom.

Clear there is a tension between requirements (1) and (2). We want lots of degrees

of freedom, and lots of states at high energies, but very few states at low energies.

Roughly speaking, you can think of this as the requirement that the CFT by confining :

it has lots of states at high energies, but very few at low energies where quarks are

confined. Later we will see a very direct link between black hole thermodynamics and

confinement.

14.4 The Holographic Principle

Many years ago Bekenstein conjectured that the maximum entropy you can fit into a

region of space is equal to the entropy of the corresponding black hole:

Smax =
area

4GN

. (14.12)

This is called the Bekenstein bound. The argument is simple. If you have lots of stu↵

in a region and Sstuff > Sblackhole, then you can throw in some more stu↵ and form a

black hole. In doing so, the entropy of the system decreases! Therefore the second law

requires a bound like (14.12).69

This bound inspired ’t Hooft (in ’93) and later Susskind (in ’94) to argue that a theory

68But not an entirely satisfactory one. For example, it can increase under RG flow.
69In the last few years this bound has been understood much better using entanglement entropy.

See for example 1404.5635 and references therein.
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of quantum gravity must secretly live in fewer dimensions than our observed spacetime.

This principle is realized concretely by AdS/CFT.
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