
13 Absorption cross section from the dual CFT

Now we will reproduce the absorption cross section (12.21) using holography. This re-

quires introducing some elements of conformal field theory. We will be more systematic

about CFT and about the AdS/CFT correspondence later, for now we are just going

to work this example in full detail as an illustration.

13.1 Brief Introduction to 2d CFT

(References: Polchinski’s String Theory Ch 2 is a brief introduction. For a more

detailed systematic introduction to 2d CFT, see chapters 4-6 (especially chapter 5) of

the (highly recommended!) book Conformal Field Theory by Di Francesco et al.

Consider a 2d QFT on the Euclidean plane R2, with coordinates x
1

and x
2

. It is very

convenient to use the complex coordinates

z = x
1

+ ix
2

, z̄ = x
1

� ix
2

. (13.1)

We take the flat metric on the plane,

ds2 = (dx
1

)2 + (dx
2

)2 = dzdz̄ . (13.2)

2d Conformal Transformations

A conformal transformation is a coordinate transformation that leaves the metric un-

changed, up to an overall rescaling:

ds2 = dzdz̄ ! e�(w,w̄)dwdw̄ . (13.3)

First we want to find what type of coordinate changes have this special property. To

this end, consider an arbitrary coordinate change z = f(w, w̄), z̄ = f̄(w, w̄) where f̄ is

the complex conjugate of f . The metric in (w, w̄) coordinates is

ds2 =

✓
@f

@w
dw +

@f

@w̄
dw̄

◆ ✓
@f̄

@w
dw +

@f̄

@w̄
dw̄

◆
. (13.4)
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For this to have the form (13.3) we must impose

@f

@w

@f̄

@w
=

@f

@w̄

@f̄

@w̄
= 0 . (13.5)

This is equivalent to the condition that f is a holomorphic function,

f = f(w), f̄ = f̄(w̄) . (13.6)

Thus conformal transformations in two dimensions are equivalent to holomorphic coor-

dinate changes. The conformal group is the group of holomorphic maps. This is infinite

dimensional, since you need an infinite number of parameters to specify a whole func-

tion. Note that this is not the case in higher dimensions; the conformal group in d > 2

dimensions is the finite-dimensional group SO(d, 2).

Mapping the plane to the cylinder

A very important conformal transformation is the mapping of the z-plane to the w-

cylinder. The mapping is

z = e�iw/R , z̄ = eiw̄/R . (13.7)

The w coordinate labels a cylinder, since if we take w ! w+2⇡R we get back to where

we started. That is, w is identified,

w ⇠ w + 2⇡R . (13.8)

This circle is a circle of constant magnitude on the z plane. (Draw the pictures for

yourself.) If we split w into real coordinates,

w = �
1

+ i�
2

, (13.9)

then �
1

⇠ �
1

+ 2⇡R is the circle and �
2

is infinite. Negative values of �
2

correspond to

small circles on the z plane, and larger values of �
2

correspond to increasingly larger

circles on the z plane.
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Classical CFT

At the classical level, a QFT has conformal symmetry if the action is invariant under

conformal transformations. For example consider the action of a free massless scalar

S =

Z
d2z@�@̄� (13.10)

where we use the notation

@ = @z, @̄ = @z̄ . (13.11)

Perform the infinitesimal coordinate change z ! w(z) and it is easy to check that

the Jacobian in the measure cancels the factors that show up from @� = dw
dz

@w�. On

the other hand the free massive scalar is not conformally invariant. This illustrates a

general feature of conformal field theories: they do not have any dimensionful param-

eters. Dimensionful parameters set a scale and therefore are not compatible with the

scale transformation z ! �z, which is part of the conformal group (in any number of

dimensions).

Quantum CFT

Classical conformal invariance does not necessarily imply quantum conformal invari-

ance. This is familiar from QCD (setting all quark masses to zero) — this theory

is classically scale invariant, but to define the quantum theory we must introduce a

regulator, and this leads to the dimensionful QCD scale ⇤QCD with important physical

consequence (like confinement), so QCD is certainly not scale-invariant or conformally

invariant at the quantum level. From now on when we say ‘CFT’ we mean at the

quantum level.

Primary operators

The local operators of a CFT must transform covariantly. Primary operators61 trans-

form with a simple rescaling,

O0(w, w̄) =

✓
dw

dz

◆�h ✓
dw̄

dz̄

◆�¯h

O(z, z̄) (13.12)

61These are often called primary fields. The names are interchangeable. But remember that in
CFT, a ‘field’ is not necessarily a fundamental field that appears in the Lagrangian and is integrated
over in the functional integral. For example in the free massless scalar, @� is a primary field.
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where (h, h̄) are called the conformal weights. Another common notation is

� = h + h̄, s = h� h̄ , (13.13)

where � is the scaling dimension and s is the helicity. � is the weight under a constant

rescaling (x
1

, x
2

) ! (�x
1

, �x
2

), ie under

�z = �z, �z̄ = �z̄ (13.14)

the operator transforms with a factor of ���. s is the helicity because it is the weight

under a rotation (x
1

, x
2

) ! (x
1

� �x
2

, x
2

+ �x
1

), ie under

�z = �z, �z̄ = ��z̄ (13.15)

the operator transforms with a factor of ��s. The absolute value |s| = |h � h̄| is the

spin of the operator. (This is just the usual definition of spin, so for example in free

field theory it corresponds to the number of Lorentz indices on a field.

Descendant operators are operators that you get from primaries by acting with confor-

mal transformations. For example, @O(z, z̄) is a descendant of O(z, z̄). The transfor-

mation law for descendants is more complicated than (13.12) but is completely fixed

by symmetry.

All local operators in a CFT are either primary or descendant. This ensures that

correlation functions transform covariantly under the conformal group. For example,

the 2-point function on the plane must have the form

hO
1

(z
1

, z̄
1

)O
2

(z
2

, z̄
2

)i =
C

12

(z
1

� z
2

)2h(z̄
1

� z̄
2

)2

¯h
(13.16)

where

h = h
1

= h
2

, h̄ = h̄
1

= h̄
2

. (13.17)

C
12

is a constant, related to the normalization of the field. The two-point function

vanishes if the conformal weights of the two fields are di↵erent.
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The path-integral definition of hO
1

(z
1

, z̄
1

)O
2

(z
2

, z̄
2

)i in (13.16) is (up to normalization)

hO
1

(z
1

, z̄
1

)O
2

(z
2

, z̄
2

)i =

Z
D�O

1

(z
1

, z̄
1

)O
2

(z
2

, z̄
2

)e�S[�] (13.18)

where � stands for the fundamental fields of the theory.62 Recall from our discussion

of Euclidean path integrals that the path integral on a half-plane prepares the vacuum

state. Therefore in operator langauge,

hO
1

(z
1

, z̄
1

)O
2

(z
2

, z̄
2

)i = lineh0|O1

(z
1

, z̄
1

)O
2

(z
2

, z̄
2

)|0iline , (13.19)

where |0iline is the vacuum state of the theory on an infinite line (which you can think

of as the Im z = 0 axis).

13.2 2d CFT at finite temperature

Remember from our discussion of Euclidean path integrals that QFT at finite temper-

ature in Lorentzian signature is related to Euclidean QFT on a cylinder, with periodic

imaginary time. Now we will see this relation very explicitly in CFT.

Mapping to the cylinder via w = iR log z, and applying the transformation law (13.12)

to (13.16), we can easily find the cylinder correlation function

hOcyl(w1

, w̄
1

)Ocyl(w2

, w̄
2

)i ⇠ R�2h

sin
�

w1�w2
2R

�
2h

R�2

¯h

sin
�

w̄1�w̄2
2R

�
2

¯h
. (13.20)

(The ‘cyl’ subscript is usually dropped, so functions of w are just assumed to be cylinder

operators.)

Exercise: Conformally invariant 2-point functions

(a) Prove (13.16).

62Often we do not have a Lagrangian for a CFT, and there is no useful notion of the ‘fundamental’
fields. However, path integral manipulations are still useful. Even in non-Lagrangian theories we
never get into trouble by pretending that there are some fundamental fields defining the functional
integral.
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(b) Derive (13.20), including the missing coe�cient.

Note two things about this correlator: First, it is invariant under the cylinder period-

icity w
1

⇠ w
1

+ 2⇡R.63 Second, it has the same short-distance singularity as the plane

correlator (13.20), i.e.,

hOcyl(w1

, w̄
1

)Ocyl(w2

, w̄
2

)i =
C

12

(w
1

� w
2

)2h(w̄
1

� w̄
2

)2

¯h
as w

1

! w
2

. (13.21)

This is always true in QFT: the short-distance behavior is fixed by vacuum correlation

functions. (In fact these two conditions fix the function (13.20) uniquely, assuming

some behavior at infinity, so we do not even strictly need the exponential mapping to

derive (13.20).)

From the Lorentzian point of view, the cylinder correlator (13.20) can be interpreted

di↵erent ways. To go to Lorentzian signature, write w = �
1

+ i�
2

where �
1,2 are real

coordinates. If we think of �
2

as ‘time’, then the Wick rotation to Lorentzian signature

is �
2

= it. In this case the circle coordinate �
1

remains a circle in Lorentzian signature,

so this Wick rotation gives the Lorentzian theory on the Lorentzian cylinder S1⇥ Time.

This Wick rotation has nothing to do with finite temperature.

To get the finite temperature theory, we instead Wick-rotate by setting �
1

= it. Thus

w ! i(t + x), w̄ = i(t� x) . (13.22)

(Note that in Lorentzian signature, w and w̄ are no longer complex conjugates.) This

means that the the theory is periodic in imaginary time t ⇠ t + 2⇡iR. Comparing to

the finite-temperature periodicity t ⇠ t + i� with � = T�1, we see that our Euclidean

CFT is related to a finite-temperature CFT at temperature

� = T�1 = 2⇡R . (13.23)

63There are some subtleties with branch cuts making this statement that we’ll ignore for now, and
it relies on the fact that (�1)2(h�h̄) = 1 since operators must have integer or half-integer spin.
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From (13.20), this means the finite-temperature Lorentzian correlator in CFT is64

G�(t� i✏, x) = Tr e��HO(t� i✏, x)O(0, 0)

⇠ (�1)h+

¯h (⇡T )2h

sinh(⇡T (t + x))2h

(⇡T )2

¯h

sinh(⇡T (t� x))2

¯h
. (13.24)

13.3 Derivation of the absorption cross section

We now return to the derivation of the absorption cross-section (12.21). Recall that we

scattered a low-energy quantum from the near-extremal black string. The near horizon

region relevant to this calculation was a BTZ black hole in AdS
3

(times S3). We will

set TL = TR = TH for simplicity, which corresponds to setting the parameter � = 0

in the black string metric. From the point of view of the near-horizon, this sets the

angular momentum of the BTZ black hole to zero.

In the gravity calculation (12.21), we found

�abs ⇠ coth

✓
!

4TH

◆
. (13.25)

Now the claim is as follows:

We can replace the near-horizon geometry by 1+1d CFT at temperature T = TH , living

on a fictitious ‘membrane’ at the boundary of AdS
3

.

This boundary was the matching location in our gravity calculation, ie some value of

r in the range r
0

⌧ r ⌧ r
1,5.

Which CFT is it?

We will only match the temperature dependence. The overall factor can also be

matched by this method, up to a constant. We will not need to specify which CFT

we are actually considering, we will just need some general properties of the CFT like

the value of the temperature, and the existence of an operator with certain confor-

mal weights. The microscopic definition of the particular CFT depends the particular

64Setting a convenient normalization, and introducing an i✏ to keep track of operator ordering.
Recall that the finite-temperature correlator is defined by ordering in Euclidean-time, so this sets the
order of the operators in the trace as written.
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theory of quantum gravity. The only known microscopic CFTs are the ones coming

from string theory, since that is our only candidate theory of quantum gravity, but in

principle there could be other CFTs corresponding to other UV completions of gravity.

In the string theory examples, where the microscopic definition of the CFT is known,

it is also possible to match the coe�cient in the absorption calculation and it comes

out correctly.

The interaction term

We want to scatter a scalar field against the CFT. We will assume that the bulk scalar

field � couples to a CFT operator O, thus adding to the CFT an interaction term

Sint =

Z
dtdxO(t, x)�(t, x, r = 0) . (13.26)

In this expression O is a CFT operator and �(r = 0) — the value of the bulk field

at the fictitious membrane where the CFT lives — is treated as a classical source.

We will assume that the space direction in the CFT is unwrapped, so we call it x 2
(�1,1) (previously called �), though the S1 version can also be done with some extra

assumptions about the CFT. We also assume the source couples weakly to the CFT so

that the interaction term (13.26) can be treated perturbatively.

Absorption rate

When we computed the absorption cross section, we assume

� = e�i!tR(r) , (13.27)

so Sint /
R

dtdxO(t, x)e�i!t. The transition amplitude from an initial state |ii to a

final state |fi is given by Fermi’s Golden Rule, as the matrix element of the interaction

Hamiltonian

Mi!f ⇠ hf |
Z

dtdxO(t, x)e�i!t|ii . (13.28)

The total absorption rate at temperature � is computed by summing this over final

states, and averaging over initial states with a thermal ensemble,

�abs ⇠
X

i,f

e��Ei

Z
dt

1

dx
1

dt
2

dx
2

e�i!(t1�t2)hi|O(t
2

, x
2

)|fihf |O(t
1

, x
1

)|ii (13.29)
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The sum over |fi is just the identity, so up to an overall factor of volume (which you

can think of as the momentum-conserving delta function �(0)),

�abs ⇠
Z

dtdxe�i!t
X

i

e��Eihi|O(t, x)O(0, 0)|ii . (13.30)

This sum is the definition of the thermal 2-point function,

�abs ⇠
Z

dtdxG�(t� i✏, x)e�i!t (13.31)

This thermal correlator was calculated in (13.24). To take the Fourier transform, use

the integral

Z
dye�i!y(�1)h

✓
⇡T

sinh [⇡T (y ± i✏)]

◆
2h

=
(2⇡T )2h�1

�(2h)
e±!/2T

���(h + i
!

2⇡T
)
��2 . (13.32)

First take the Fourier transform assuming indepdendent left and right momenta

G�(!L, !R) = (�1)h+

¯h

Z
dtdxe�i!L(t+x)�i!R(t�x)

(⇡T )2h

sinh(⇡T (t + x))2h

(⇡T )2

¯h

sinh(⇡T (t� x))2

¯h

and then set !L = !R = !. The absorption rate is given by the di↵erence of absorption

and emission. These correspond to two di↵erent i✏ prescriptions (Exercise: why?). So

finally

�abs ⇠ �abs � �emit (13.33)

⇠
Z

dtdxe�i!t [G(t� i✏, �)�G(t + i✏, �)] (13.34)

⇠ 2
(2⇡T )2(h+

¯h)�2

�(2h)�(2h̄)
sinh

⇣ !

2T

⌘ ���(h + i
!

4⇡T
)�(h̄ + i

!

4⇡T
)
��2 (13.35)

This matches the gravity answer (13.25) if we set

h = h̄ = 1 (13.36)

and use the identity |�(1 + ix)|2 = ⇡x/ sinh(⇡x). Why should the weight be (13.36)?

For now, we just pick them so the answer works out. In general the weights depend

on the mass and spin of the bulk field, and (13.36) is the correct choice for a massless

126



bulk field. We will treat this more systematically below.

13.4 Decoupling

The upshot of the last few sections is that

0

BBB@

Far-region gravity

+

gravity in AdS
3

⇥ S3

1

CCCA
=

0

BBB@

Far-region gravity

+

CFT
2

on AdS
3

boundary

1

CCCA
.

In the gravity calculation, we assumed near-extremal but not exactly extremal. This

retained some coupling between the near-horizon degrees of freedom, and the fields

in the asymptotically flat far region. Similarly, in CFT, we assume a weak coupling

between gravity fields and CFT fields.

If we take TH ! 0, the far region and near regions decouple. This is Maldacena’s

decoupling limit. In this limit we can completely drop the asymptotically flat part of

the calculation, and we are left with the (3d version of the) AdS/CFT correspondence:

gravity in AdS
3

⇥ S3 = CFT
2

on AdS
3

boundary . (13.37)

CFTs are UV-complete, so this duality defines not only low-energy e↵ective gravity,

but a UV-complete theory of gravity on AdS
3

⇥ S3.
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