
10 Interlude: Preview of the AdS/CFT correspon-

dence

The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also

known as ‘holography’ or ‘gauge/gravity duality’ or various permutations of these

words. AdS/CFT was conjectured by Maldacena in a famous paper in 1997. A full

understanding of Maldacena’s motivations and results, and the huge body of work to

follow, requires some string theory, but AdS/CFT itself is independent of string theory

and we will not follow this route. Instead we will ‘discover’ AdS/CFT by throwing

stu↵ at black holes. In fact, this parallels the historical discovery of AdS/CFT in

1996-1997, though we will obviously take a shorter path. Our starting point will be a

black-hole-like solution in 6 dimensions, which might seem umotivated, so the purpose

of this interlude is to describe where we are headed, so you know we are doing this for

a good reason.

10.1 AdS geometry

Anti-de Sitter space is the maximally symmetric solution of the Einstein equations

with negative cosmological constant. We worked out the metric of AdS
3

in global and

Poincaré coordinates in the previous section. For general dimension AdSd+1

, the metric

in global coordinates is

ds2 = `2
�� cosh2 ⇢dt2 + d⇢2 + sinh2 ⇢d⌦2

d�1

�
. (10.1)

To find the Penrose diagram, we can extract a factor of cosh2 ⇢ and then define a new

coordinate by

d� =
d⇢

cosh ⇢
) � = 2 tan�1 tanh(⇢/2) . (10.2)

As ⇢ runs from 0 to 1, ⇢ runs from 0 to ⇡/2. Each value of t, � is a sphere Sd�1. There-

fore the Penrose diagram looks like a solid cylinder, where ⇢ is the radial coordinate of

the cylinder, and t,⌦ are the coordinates on the surface of the cylinder.

Unlike flat space, the conformal boundary (usually just called ‘the boundary’) of AdS

is timelike. From the Penrose diagram, we can see that massless particles reach the
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boundary in finite time t. (Massive particles cannot reach the boundary; they feel an

e2⇢ potential if they try to head to large ⇢.)

The metric of the Poincaré patch is

ds2 =
`2

z2
�
dz2 � dt2 + d~x2

�
, (10.3)

where ~x = (x1, . . . , xd�1). In these coordinates, the boundary is at z = 0. These

coordinates cover a wedge of the global cylinder. You can check this for AdS
3

using

the coordinate transformations derived in the previous section.

10.2 Conformal field theory

A conformal field theory (CFT) is a QFT with a particular spacetime symmetry, con-

formal invariance. Conformal invariance is a symmetry under local scale transfor-

mations. We will discuss this in detail later. For now I will just mention that one

consequence of conformal symmetry is that correlation functions behave nicely under

coordinate rescalings x ! �x. Correlation functions of primary operators (which are

lowest weight states of a conformal representation) obey

hO
1

(x
1

)O
2

(x
2

) · · ·On(xn)i = ��1+�2+···+�nhO
1

(�x
1

) · · ·On(�xn)i (10.4)

where �i is called the scaling dimension of the operator Oi. This (together with

rotation and translation invariance) implies for 2pt functions

hO(x)O(y)i / 1

|x� y|2� . (10.5)

The simplest example of a CFT is a free massless scalar field, where for example in

4d h�(x)�(y)i = (x � y)�2. A massive free field is not conformal, since m shows up

in correlation functions and spoils the simple power behavior. This is generally true –

CFTs do not have any dimensionful parameters, so there can be no mass terms in the

Lagrangian. However the converse is not true, since there are theories with no mass

terms in the classical theory are not necessarily conformal. For example in massless

QCD, scale symmetry is broken in the the quantum theory so the theory acquires a
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dimensionful parameter via dimensional transmutation.

There are also very nontrivial interacting conformal field theories. We will discuss a

couple of examples later.

10.3 Statement of the AdS/CFT correspondence

The AdS/CFT correspondence is the an exact relationship between any54 theory of

quantum gravity in asymptotically AdSd+1

spacetime and an ordinary CFTd, without

gravity. This relationship is called a duality. It is holographic since the gravitational

theory lives in (at least) one extra dimension. The theories are believed to be entirely

equivalent: any physical (gauge-invariant) quantity that can be computed in one theory

can also be computed in the dual. However, the mapping between the two theories can

be highly nontrivial. For example, easy calculations on one side often map to strongly

coupled, incalculable quantities on the other side.

It is often useful to think of the CFT as ‘living at the conformal boundary’ of AdS.

Indeed, the CFT lives in a spacetime parameterized by x = (t, ~x), whereas gravity

fields are functions of x and the radial coordinate ⇢. And when we discuss correlation

functions of local operators we will see that a CFT point x corresponds to a point

on the conformal boundary of AdS. But it is not quite accurate to say that the CFT

lives on the boundary, for two reasons. First, we should not think about having both

theories at once; we either do CFT or we have an AdS spacetime, never both at the

same time. Second, the CFT is dual to the entire gravity theory, so in a sense it lives

everywhere.

The two theories are commonly referred to as ‘the bulk’ (i.e., the gravity theory) and

‘the boundary’ (ie the CFT).

In this course we will mostly restrict our attention to two types of observables in

AdS/CFT: thermodynamic quantities and correlation functions.

54Some people might obect to the word ‘any’ here. To be safe, we could say ‘any theory that we
know how to define in the UV and acts like ordinary gravity+QFT in the IR.’
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Thermodynamics

The mapping between thermodynamic quantities on the two sides of the duality is

simply that they should be equal, for example the thermal partition functions obey

Zcft(�) = Zgravity(�) . (10.6)

Here Zcft = Tr e��Hcft is the ordinary thermodynamic partition function of a QFT.

Zgravity is the quantity whose semiclassical limit we discussed above, related to the

on-shell action of a black hole,

Zgravity(�) = e�SE [g] + · · · . (10.7)

For the exact relation (10.6) we must in principle include all the quantum corrections

to this semiclassical formula.

Correlation functions

The goal of the next couple lectures is to derive the dictionary that relates CFT

correlators to a gravity calculation. We will give the exact prescription later, but

here is the general idea. Each field �i(⇢, x) in the gravitational theory there is a

corresponding operator Oi(x) in the CFT.55 The mass of � determines the dimension

of O. CFT correlation functions can be computed on the gravity side by computing a

gravity correlator of �, with the points inserted at the boundary:

hO
1

(x
1

) · · ·On(xn)icft $ “ lim
⇢!1

”h�
1

(⇢, x
1

) · · ·�n(⇢, xn)igravity (10.8)

The limit is in quotes because actually we need to rescale by some divergent factors

that we’ll come to later.

Top down, bottom up, and somewhere in between

AdS/CFT is general, we do not need to refer to a particular theory of a gravity or

a particular CFT. However it is often useful to have specific theories in mind, with

55Here x = (t, ~x) denotes all d dimensions of the CFT and ⇢ is the radial coordinate.
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detailed microscopic definitions. For example: Type IIB string theory on AdS
5

⇥ S5 is

dual to N = 4 supersymmetric Yang-Mills in 4d.

Super-Yang-Mills is a particular CFT with a known Lagrangian. Although IIB string

theory is not defined non-perturbatively (except via this duality), it has many known

microscopic ingredients. Calculations in these two specific theories can be compared

in great detail.

There are other microscopic examples — deformations of this one, and di↵erent versions

in di↵erent dimensions, with di↵erent types of dual CFTs. All of them (as far as I

know) come from brane constructions in string theory. This is often called the ‘top

down’ approach to AdS/CFT.

Another approach is to simply assume that we have a CFT with some low-dimension

primaries with a particular pattern, and perhaps with some assumptions about the

symmetries and conserved charges of the theory. This is more in the spirit of e↵ective

field theory and is often called ‘bottom up.’ In many cases we can also include informa-

tion about the UV completion of the CFT (i.e., very high dimension operators) in this

approach so it actually goes beyond e↵ective field theory, but without every specifying

the actual Lagrangian of the CFT.

Both approaches are important. Often calculations that can be done in one approach

are impossible in the other, or calculations first done microscopically turn out to have

more general and possibly more intuitive explanations via e↵ective field theory.
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