
Lecture Notes on Classical de Sitter Space

Thomas Hartman

Cornell University

Please email corrections and suggestions to: hartman@cornell.edu

Contents

1 de Sitter Basics 2

1.1 de Sitter as an embedding . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Global coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Penrose diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 dS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Other coordinates on de Sitter 11

2.1 Flat slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Static patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1



1 de Sitter Basics

de Sitter spacetime is the maximally symmetric spacetime of constant positive curva-

ture. It is a solution of the vacuum Einstein equations with a positive cosmological

constant. It is directly relevant for observation, in two (as fas as we know unrelated!)

ways. First, there is evidence that the very early universe had a period of rapid expan-

sion, ‘inflation’, well approximated by de Sitter spacetime. Second, our tiny present-day

cosmological constant currently accounts for about 68% of the energy density of the

universe, and this fraction is growing as the universe continues to expand. This means

we are entering a second de Sitter phase. The early, inflationary de Sitter phase had a

large cosmological constant and correspondingly tiny radius of curvature. The future,

dark energy de Sitter has an energy set by today’s cosmological constant, and enormous

radius of curvature close to today’s Hubble scale.

Some references

There is basic introduction to de Sitter in Carroll’s book, and a more in depth intro-

duction in Hawking and Ellis. For various coordinate systems, as well as discussion

of de Sitter black holes and the first law, see Strominger’s Les Houches lectures [hep-

th/0110007], as well as Anninos [arXiv: 1205.3855]. For applications to inflation,

including the production of cosmological perturbations, see the early chapters of the

textbook by Baumann and McAllister (or related lecture notes by the authors available

online). For a discussion of entropy bounds in this context, as well as a nice discussion

of de Sitter perturbations and instabilities, see Bousso [hep-th/0205177] and references

therein.

1.1 de Sitter as an embedding

Usually in GR we just define manifolds and curvatures intrinsically, not by ‘embedding’

them in a higher dimensional spacetime (which isn’t even possible in general). But for

de Sitter, the embedding is actually easy and intuitive so it’s a great place to start:

D-dimensional de Sitter spacetime can be viewed as a timelike hyperbola, embedded

in D + 1-dimensional Minkowski spacetime R1,D. The metric in the embedding space
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R1,D is

ds2embed = −dX2
0 + dX2

1 + · · · dX2
D . (1.1)

de Sitter, with radius `, is the hypersurface defined by the equation

XµX
µ = `2 . (1.2)

This is just an hyperbola. It’s easy to draw dS2, embedded in R1,2. See figure 1.

Figure 1: dS2 viewed as a hyperbola in R1,2. The vertical direction is time, X0. The cross
sections are S1’s. In the case of higher-dimensional de Sitter, this picture is still useful but
somewhat impressionistic; the slices are SD−1’s.

1.2 Global coordinates

The cross-sections of the dS2 hyperbola (with the ‘straight across’ cutting of the figure)

are S1’s. More generally, the cross sections of dSD, sliced at constant-X0, are clearly

SD−1’s. We can put down global coordinates on the hyperbola by defining

X0 = ` sinh(t/`) , Xi = ` cosh(t/`)zi , (1.3)

where i = 1 . . . D and the the zi are constrained to the unit sphere, ~z 2 = 1. This

parameterization is designed so that plugging into (1.2) automatically solves the hy-

perbola equation. We can then put coordinates on the (D − 1)-sphere ~z 2 = 1 in the

usual way.∗ To find the metric on the hyperbola we then just plug everything into

(1.1). The result is

ds2 = −dt2 + `2 cosh2(t/`)dΩ2
D−1 . (1.4)

∗For example, in dS3, we set z1 = cos θ, z2 = sin θ cosφ, z3 = sin θ sinφ.
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These are called global coordinates because they cover the entire hyperboloid.∗ Often

we will foliate the spatial (D − 1)-sphere by (D − 2)-spheres,

ds2 = −dt2 + `2 cosh2(t/`)(dθ2 + sin2 θdΩ2
D−2) (1.5)

Relation to FRW

Global coordinates (1.4) are also called the closed slicing of de Sitter, especially in

the context of cosmology. To explain this terminology, recall that the FRW metric for

any homogeneous, isotropic universe is

ds2FRW = −dt2 + a(t)2dΣ2 (1.6)

where the spatial slices Σ are either open (hyperbolas), flat (RD−1), or closed (spheres).

Clearly de Sitter is an example of a closed FRW universe. The scale factor a(t) =

` cosh(t/`) is exponentially decreasing, reaches a minimum at t = 0, a(0) = `, then

expands exponentially into the future.

Careful with the picture

Note that we should not take the picture in figure 1 too literally in the higher-

dimensional case. For example, let’s call the rightmost point of the hyperbola the

‘north pole’ of the sphere, and label it by the angle θ = 0. Then the ‘equator’ of an

S1 consists of two distinct points, at θ = ±π
2
. You can see these two points on the

picture of dS2, on opposites sides of the S1. However in higher dimensions the equator

is connected. For example, in dS3, the global-time slices are S2’s so the equator at

θ = π/2 is the usual equator of a 2-sphere.

More generally, please be cautious with the embedding diagram. There is no R1,D – it’s

just a trick, a figment of your imagination. Perturbations of de Sitter cannot even be

viewed as embedded surfaces, so ultimately we only care about the intrinsic geometry.

∗This is a slight abuse of language: it is impossible to cover both poles of the (D− 1)-sphere with
a single coordinate patch for D > 2. So the coordinates are not quite global, but they are global up
to the easily-dealt-with isolated points at the poles.
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Analytic continuation to the sphere

dSD is a Minkowski-signature version of the Euclidean sphere, SD. To see this very

explicitly, note that under

X0 → iXD+1, t→ iτ (1.7)

the entire discussion so far becomes a discussion of the D-sphere embedded in Eu-

clidean RD+1. Under this analytic continuation, the global coordinates of dSD become

coordinates on SD where we slice at constant polar angle

Θ =
τ

`
+
π

2
. (1.8)

The shift by π/2 is there so that the metric on the sphere is written in the usual way,

with a sine instead of cosine:

ds2D−sphere = `2(dΘ2 + sin2 ΘdΩ2
D−1) . (1.9)

Note that the time-slice at t = 0 can be viewed either as a slice of dSD, or as the

equator of SD.

Curvatures

Now that we have the metric we can calculate the curvature of de Sitter. (It also

follows easily by continuation from the sphere.) The Ricci tensor and Ricci curvature

are

Rµν =
D − 1

`2
gµν , R =

D(D − 1)

`2
. (1.10)

It follows that dSD solves the vacuum Einstein equations with positive cosmological

constant related to the dS radius by

Λ =
(D − 1)(D − 2)

2`2
. (1.11)
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1.3 Isometries

The embedding view gives an easy way to find isometries of de Sitter spacetime: they

are inherited from isometries of R1,D that preserve the hyperboloid. This is just like

the derivation of the SO(3) isometries of a 2-sphere by viewing them as rotations in

R3. By analogy to the sphere, the isometries of R1,D that preserve the hyperboloid are

rotations:

Jij = Xi∂j −Xj∂i (1.12)

and boosts:

Ki = X0∂i +Xi∂0 . (1.13)

Together, these generate (under Lie brackets) the isometry group SO(D, 1) of dSD.

Convince yourself that there are

D(D − 1)

2
rotations + D boosts =

D(D + 1)

2
generators , (1.14)

which meets the criterion for a maximally symmetric D-dimensional spacetime.

Exercise 1.1: Lie algebra

Writing the isometries of dS2 in embedding space language, and check that under Lie

brackets they obey SO(1, 1) ∼ SL(2, R).

Of course we often need the intrinsic description of the isometries, and the vector fields

above are written in the embedding space. It is easy to find the intrinsic coordinate

representations of these vector fields as follows. First we imagine foliating R1,D by

de Sitter hyperbolas of radius r. In other words, replace ` → r in the coordinate

definitions (1.3). Second, change coordinates from (1.12), (1.13) to these de-Sitter-

adapted coordinates. Since we’ve only written isometries that preserve the hyperboloid,

you will find that all the ∂r components vanish. Finally, set r = `, and the remaining

components give you a vector field on de Sitter in global coordinates.
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Of course, the rotations will just give the usual Killing vectors of the (D − 1)-sphere,

so only the boosts are particularly interesting.

Exercise 1.2: Induced isometries

Follow this procedure to find the boost isometries of dS3, in global coordinates.

One of the answers, which is the same for all D, is

K1 = X0∂1 +X1∂0 = ` cos θ∂t − sin θ tanh(t/`)∂θ , (1.15)

where θ is the polar angle on the spatial (D − 1)-sphere.

1.4 Penrose diagram

Now we want to draw an intrinsic picture of de Sitter (ie, without embedding into

a higher-dimensional spacetime). Global de Sitter can be viewed as a contracting-

then-expanding (D − 1)-sphere. (Assume for now that D > 2.) Let’s foliate this

(D − 1)-sphere by (D − 2)-spheres,

ds2 = −dt2 + `2 cosh2(t/`)(dθ2 + sin2 θdΩ2
D−2) (1.16)

The north pole θ = 0 and south pole θ = π are just points, but any other value of

θ ∈ (0, π) includes a whole (D − 2)-sphere. For now we will focus on just the (t, θ)-

directions. Often this is sufficient; for example we can use rotational symmetries of the

(D − 2)-sphere to put geodesics at a fixed point of the (D − 2)-sphere without loss of

generality.

In the coordinates (t, θ), null geodesics do not travel at 45◦. To draw a Penrose diagram

(aka conformal diagram) we need to design a coordinate system that (i) covers the whole

spacetime, (ii) makes massless particles travel at 45◦, and (iii) fits on the page. This
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procedure is not unique, but that’s fine; one way to proceed is as follows. The first

condition is already accomplished by our choice of global coordinates. To impose the

second condition, we change coordinates from t→ σ(t), and require:

− dt2 + `2 cosh2(t/`)dθ2 = Ω(σ)2
[
−dσ2 + dθ2

]
. (1.17)

The right-hand side is conformally flat; the conformal factor Ω does not affect null

geodesics, so this will give us a nice causal diagram with 45◦ null geodesics. From this

equation we read off Ω = ` cosh(t/`) and dt = Ωdσ, so∫
dt

` cosh(t/`)
=

∫
dσ (1.18)

Integrating,

tan(
σ

2
) = tanh(

t

2`
) . (1.19)

Note that t ∈ (−∞,∞) corresponds to

σ ∈ (−π/2, π/2), (1.20)

so we’ve automatically satisfied the third condition, that our picture fits on a finite-size

page. The metric is now

ds2 =
`2

cos2 σ

[
−dσ2 + dθ2 + sin2 θdΩ2

D−2
]
. (1.21)

These are the coordinates used to draw the Penrose diagram in figure 2.

Some comments:

• It’s a square in the (σ, θ) plane. This is because both σ and θ have coordinate

range π.

• The straight-across (fixed σ) spatial slices of the Penrose diagram are simply the

(D − 1)-spheres on constant-X0 slices of the embedding picture in figure 1.

• There are past and future conformal boundaries I− and I+. These are edges, in

the conformal sense — everyone approaches them in the infinite past and infinite

future. It takes infinite affine-time to reach them.
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Figure 2: Penrose diagram for dSD with D > 2. Each pixel in the interior is a (D−2)-sphere;
the radius of this (D − 2) sphere goes to zero at the north and south poles of the spatial
slice, ie the left and right edges of the diagram. θ ∈ (0, π) is the polar angle on the spatial
(D − 1)-sphere, and σ is the conformally rescaled global time, running from (−π

2 ,
π
2 ).

• The apparent ‘edges’ on the left and right sides of the diagram are not real

boundaries, they are just the poles of the (D − 1)-sphere at each global time-

slice. It is important to note that each ‘pixel’ in the interior of the Penrose

diagram represents a (D− 2)-sphere, while the ‘pixels’ along these left and right

edges are truly points, since they are at the poles of the (D − 1)-sphere.

• Null geodesics restricted to the (t, θ)-plane travel at 45◦ on the Penrose diagram.

Null geodesics with nontrivial motion along the SD−2 will appear on the Penrose

diagram at less than 45◦.

• Throughout these lectures I will put the north pole on the right, and when I

talk about static observers I imagine they sit along the right edge of the Penrose

diagram. Evidently this is because I grew up on the east coast of the United

States, and on on the west coast they put observers on the left.∗

• There is an observer-dependent horizon, called the ‘cosmological horizon’. This

is the null surface beyond which the observer can never receive a signal. We’ll

have a lot more to say about this below.

∗And I’ve never met anyone traveling back in time from a low-entropy future, but I imagine they
put I− at the top of their Penrose diagrams.
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1.5 dS2

D = 2 is a special case, since 1-sphere’s are quite different from higher dimensional

spheres. On the 1-sphere, the angle runs over θ ∈ (−π, π), so the Penrose diagram is

twice as wide:

global slices

(1.22)

The left and right edges are identified, θ ∼ θ + 2π.
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2 Other coordinates on de Sitter

Now that we’ve covered the global properties of de Sitter, we’ll talk about two other

very useful coordinate systems, covering just parts of the spacetime: the static patch

and the flat slicing. If this feels like a step backward, consider black holes: it is very

useful to know the Schwarzschild coordinates, which cover the outside accessible to

an asymptotic observer, even though the Kruskal coordinates cover a larger region.

The analogue of the “Schwarzschild” coordinates for de Sitter are static patch coor-

dinates. But we’ll start with the flat slicing, which are somewhat analogous to the

ingoing Eddington-Finkelstein coordinates for a black hole. They play a special role in

cosmology.

2.1 Flat slicing

In terms of the embedding space R1,D, the flat slicing of dSD is

X0 = ` sinh(t/`) +
r2

2`
et/`, X1 = ` cosh(t/`)− r2

2`
et/`, Xi = et/`yi (2.1)

where i = 2 . . . D and r2 ≡ ~y 2. Plugging into the line element (1.1) gives de Sitter in

the flat slicing:

ds2 = −dt2 + e2t/`d~y 2 (2.2)

where d~y 2 is the flat metric on RD−1. Note that this t is different from the global time

t.

From (2.1) we see that these coordinates only cover

X0 +X1 > 0 . (2.3)

If we draw a diagonal plane through the embedding diagram, this is the ‘upper triangle.’

Similar coordinates can be chosen to cover just the ‘lower triangle.’

Flat vs Global coordinate transformation

Equating (2.1) and (1.3) gives the relation between flat and global coordinates. To
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write this in a useful way, let’s first put down spherical coordinates on the flat slices:

ds2 = −dt2 + e2t/`(dr2 + r2dΩ2
D−2) (2.4)

and we will compare to (1.5). The dΩD−2’s in these two expressions are the same, so

we just need to worry about mapping (tg, θ)↔ (t, r). (tg is the global time coordinate,

now with a subscript to distinguish it from flat-slicing-time t.) Proceeding via the

embedding space we eventually find the simple coordinate change

et/` = cos θ cosh(tg/`) + sinh(tg/`),
`

r
et/` = sin θ cosh(tg/`) (2.5)

Note that at late times, the time coordinates become the same,

t ∼ tg as t→∞ . (2.6)

We can also use (2.5) to draw the flat slices on the Penrose diagram, and see which

portion of de Sitter is covered by this coordinate patch. The result is in figure 3.

Exercise 2.1: Getting to know the flat slicing

Derive (2.5) and reproduce figure 3.

The flat slicing covers only half the Penrose diagram, so this metric by itself is past-

geodesically incomplete. Timelike worldlines, unless they are specially chosen to sit at

the North pole, will exit the flat slicing in the past, in finite affine time.

On the other hand, once we have initial conditions on some full flat slice, it completely

determines the future evolution of de Sitter.

Relation to cosmology

This is called the flat slicing because, comparing to (1.6), we see that it is a flat FRW
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Figure 3: Flat slicing of de Sitter, drawn on the Penrose diagram. Blue curves are constant-t
flat slices, and red curves are the surfaces of constant-r. Intersections of the blue curves
with the dashed line are the cross-sections of the cosmological horizon; see discussion below
around (2.15).
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universe with an exponentially growing scale factor,

a(t) = et/` . (2.7)

Recall that in FRW cosmology, we assume that matter — galaxies, dust, etc — has a

preferred rest frame. On average, matter is assumed to be at rest in the ‘comoving’

~y-coordinate. Therefore this describes an exponentially growing universe, in which

matter is sitting at fixed comoving coordinates but speeding apart in proper distance.

The matter worldlines are the red timelike curves in figure 3.

Of course we have not included any matter in our Einstein equation, but this is still

a good approximation as long as the energy density from the cosmological constant

dominates over the other components. And, the matter is being exponentially diluted,

whereas the cosmological constant is, well, constant. So once Λ takes over, everything

else quickly ceases to matter and we get exponential expansion. This will go on for-

ever, unless, for some reason, the cosmological constant ‘turns off’ by some dynamical

mechanism. This is believed to be exactly what happened in inflation.

Note that the de Sitter spacetime, by itself, has no preferred coordinate system and

no preferred rest frame – a choice of global vs flat coordinates is an arbitrary labeling

that contains no physics whatsoever. However, when we talk about the FRW universe,

there is also matter, and the (average) rest frame of the matter sets a preferred frame.

Therefore the closed slicing and flat slicing are inequivalent FRW universes. (The

spacetimes are identical, but the initial conditions on the assume matter distribution

are different. At late times, when the global sphere becomes large, the two become

asymptotically the same.)

Horizon

Note that there is a horizon, and that comoving matter is escaping behind the horizon.

Like in a black hole, this stuff clearly can’t return to the observer sitting at the north

pole (right edge of the Penrose diagram). To describe this horizon in more detail, it

helps to consider yet another coordinate system that makes the horizon manifest...
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2.2 Static patch

de Sitter has lots of timelike isometries, inherited from the boost isometries of the

embedding space. One of them was written explicitly in (1.15). Yet the metrics we’ve

considered so far — global and flat — are time-dependent, in the sense that t appears

explicitly in the metric. Since there is a timelike Killing vector field it must be possible

to find coordinates where ‘time’ does not appear in the metric. How do we construct

such a coordinate system? Let’s say we want to find coordinates such that the boost

K1 = X0∂X1 +X1∂X0 (2.8)

is manifest, ie this should be proportional to ∂t for some time coordinate t. Well we

know how to make this boost manifest in the embedding space: just go to Rindler

coordinates in the (X0, X1) plane,

X0 = ρ sinh(t/`), X1 = ρ cosh(t/`) . (2.9)

This sends −dX2
0 +dX2

1 → −
ρ2

`2
dt2 +dρ2, and ρ > 0 covers just the right Rindler wedge

of the embedding diagram in figure 1. The t-translation is the boost, as desired:

∂t =
∂X0

∂t
∂X0 +

∂X1

∂t
∂X1 (2.10)

=
1

`
K1 (2.11)

This only works with other directions set to zero. More generally, we need to pick coor-

dinates to solve the hyperbola equation X2 = `2. Inspired by the Rindler construction,

we try

X0 =
√
`2 − r2 sinh(t/`), X1 =

√
`2 − r2 cosh(t/`), Xi = rzi (2.12)

where i = 2 . . . D and ~z 2 = 1 parameterize a (D−2)-sphere. I’ve replaced ρ→
√
`2 − r2

to write things in a more standard way. The result is the static patch metric:

ds2 = −(1− r2/`2)dt2 +
dr2

1− r2/`2
+ r2dΩ2

D−2 , (2.13)
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static
patch

Figure 4: Static patch, on the Penrose diagram. This is the causal patch of an observer
sitting at the north pole, ie θ = 0 in global coordinates, ie r = 0 in static coordinates. The
right edge of the diagram is rstatic = 0; the bifurcate Killing horizon is rstatic = `. The other
three patches can also be covered by (independent) static coordinate systems, much like the
four regions of the Penrose diagram for Schwarzschild black holes.

with 0 < r < `. The metric is manifestly static, since it’s independent of t (and indeed

∂t = 1
`
K1). The horizon is at r = `. This horizon was drawn as a dashed line in the

Penrose diagram, figure 2. The static coordinates cover only the right diamond of the

Penrose diagram, see figure 4. The cosmological horizon for an observer sitting at the

North pole is a bifurcate Killing horizon for ∂t, and the bifurcation sphere is SD−2 at

the middle of the Penrose diagram. This sphere is the equator of the tglobal = 0 slice in

global coordinates.

The diamond covered by static coordinates is called the causal patch, or static patch.

This the region of de Sitter accessible to a single observer, in the sense that the observer

and both send and receive signals to/from this entire region.
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Static vs Flat coordinates

In order to distinguish coordinate systems, let’s call the static coordinates (t, r) with

line elemtn (2.13), and call the flat-slicing coordinates (tf , rf ), with line element (2.4).

(The angles ΩD−2 are the same in both.) Comparing the embedding definitions, (2.12)

and (2.1), we find the coordinate transformation

r = rfe
tf/`, e−2t/` = e−2tf/` −

r2f
`2

(2.14)

Horizon in the flat slicing

From (2.14), in the flat slicing, the cosmological horizon for an observer at the north

pole is at r = `, ie

horizon: rf = `e−tf/` (2.15)

The exponential decrease exactly cancels the increase from the scale factor, so that

the portion of the flat slice inside the causal patch has constant volume. This region is

sometimes called the ‘Hubble volume’; in figure 3, it is the portion of a blue slice to

the right of the horizon. Its (D − 1)-volume is simply

Vcausal = `D−1VSD−2 (2.16)

where V n
S is the volume of the unit sphere.

The horizon also has constant area. This is somewhat evident from the fact that the

static patch is static, but those coordinates are no good on the future horizon, so it’s

better to use the flat coordinates. Then the induced metric on the horizon cross-section

rf = `etf/`, tf = constant, is simply

ds2horizon = `2(D−2)dΩ2
D−2 (2.17)

Thus

Area(horizon) = `D−2VSD−2 (2.18)

The boost vector that generates the horizon is also nice in flat coordinates,

1

`
K1 = ∂t = ∂tf −

rf
`
∂rf (2.19)
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Figure 5: Two different coordinate systems on the sphere. Left: Analytic continuation of
global coordinates on de Sitter, under tglobal = i(Θ − π/2). Note that the equator of the
sphere, Θ = π/2 (thick red) is the equatorial slice of de Sitter, tglobal = 0. Right: Analytic
continuation of static coordinates on de Sitter, under tstatic = iΦ′. Note that tstatic = 0
(thick blue) has the topology (and geometry) of a disk, not a sphere; this disk is half of the
tglobal = 0 sphere.

At the horizon, the tangent to the null generators is therefore ∂tf − e−tf/`∂rf .

Static vs Global coordinates

Call the global coordinates (tg, θ) with line element (1.5), and continue to call the

static coordinates (t, r), with line element (2.13). (The angles on the (D − 2)-sphere

are again the same in both.) Comparing (2.12) and (1.3), the transformation from

global to static is

r = ` cosh(tg/`) sin θ , sinh2(t/`) =
sinh2(tg/`)

1− cosh2(tg/`) sin2 θ
(2.20)

One can use this to draw the constant-t and constant-r surfaces on the Penrose diagram.

They look about like you’d expect, foliating the right-side diamond.

The coordinate change (2.20) looks complicated, but it’s actually very natural. To see

why, let’s consider the Euclidean analogue. When we put the usual coordinates on SD,

we first pick where the poles are. The two choices corresponding to ‘global’ and ‘static’

coordinates are illustrated in figure 5. On the left, we foliate with poles at the top and
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bottom; recall from (1.8) that this foliation is related to global coordinates under

tglobal = i
(

Θ− π

2

)
(2.21)

On the right of figure 5, we foliate with the poles at the front and back. The static

time is then related to the azimuthal coordinate of this foliation,

tstatic = iΦ′ (2.22)

With these replacements, the coordinate transformation (2.20) is just the coordinate

change that rotates from one of the foliations in the figure to the other.

Note that the analytic continuation of either the static or global de Sitter takes us to

precisely the same sphere, just foliated in a different way. As expected from the de

Sitter diagram, the tglobal = 0 slice is the equator of that sphere; this is split into two

different tstatic = 0 slices, related by a complex shift tstatic → tstatic + iπ.

This relationship is a lot like the relationship between Minkowski space and Rindler

space. In SAT notation,

Rindler : Minkowski :: Static patch : de Sitter (2.23)

Euclidean Rindler and Euclidean Minkowski are both just flat RD, but Rindler takes

us to polar coordinates whereas Minkowski takes us to cartesian coordinates.

There is a key difference between de Sitter and Rindler, however. In Rindler, the

horizon is somewhat artificial since it applies to accelerated observers. In de Sitter,

geodesic observers sit in some static patch, and necessarily have a cosmological horizon.

Exercise 2.2: Static vs Global

Derive (2.20), and plot some static slices on the Penrose diagram.

Exercise 2.3: Euclidean continuation of static coordinates

Show that by setting tstatic = iΦ′ we get a sphere, foliated as claimed in the discussion
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of figure 5.
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